
1

GRASS 4.2 Programmer’s Manual

Edited by

Steven F. Clamons
Bruce W. Byars

GRASS Research Group
Department of Geology

Baylor University
Waco, Texas

in cooperation with the

U.S. Army Construction Engineering Research Laboratory

Based on the GRASS 4.1 Programmers Manual; USA-CERL

by

Michael Shapiro, James Westervelt, Dave Gerdes, Majorie Larson, and Kenneth R. Brownfield

ABSTRACT

This manual introduces the reader to the Geographic Resources Analysis Support System version 4.2 from
the programming perspective. Design theory, system support libraries, system maintenance, and system
enhancement are all presented. Standard GRASS 4.1conventions are still used in much of the code. This
work is part of ongoing research being performed by the GRASS Research Group in the Department of
Geology at Baylor University.

October, 1997

© Copyright, 1997, Baylor University GRASS Research Group

2

Table of Contents

Chapter 1 Introduction... 9
1.1. Background ... 9
1.2. Objective ... 9
1.3. Approach ... 9
1.4. Scope ... 10
1.5. Mode of Technology Transfer .. 10
1.6. GRASS Information Center ... 10

Chapter 2 Development Guidelines.. 11
2.1. Intended GRASS Audience ... 11
2.2. Programming Standards... 12
2.3. Documentation Standards .. 12

Chapter 3 Multilevel... 13
3.1. General User .. 13
3.2. GRASS Programmer ... 13
3.3. Driver Programmer .. 15
3.4. GRASS System Designer .. 15

Chapter 4 Database Structure .. 16
4.1. Programming Interface .. 16
4.2. GISDBASE ... 16
4.3. Locations ... 16
4.4. Mapsets ... 16
4.5. Mapset Structure ... 17
4.6. Permanent Mapset ... 18
4.7. Database Access Rules .. 18

Chapter 5 Raster Maps .. 20
5.1. What is a Raster Map Layer? .. 20
5.2. Raster File Format ... 20
5.3. Raster Header Format .. 21
5.4. Raster Category File Format .. 23
5.5. Raster Color Table Format... 23
5.6. Raster History File ... 24
5.7. Raster Range File .. 25

3

Chapter 6 Vector Maps .. 26
6.1. What is a Vector Map Layer? .. 26
6.2. Ascii Arc File Format .. 26
6.3. Vector Category Attribute File ... 28
6.4. Vector Category Label File .. 29
6.5. Vector Index and Pointer File ... 29
6.6. Digitizer Registration Points File ... 29
6.7. Vector Topology Rules ... 29
6.8. Importing Vector Files Into GRASS... 30

Chapter 7 Point Data: Site List Files.. 31
7.1. What is a Site List? .. 31
7.2. Site File Format ... 31
7.3. Programming Interface to Site Files ... 31

Chapter 8 Image Data: Groups .. 32
8.1. Introduction ... 32
8.2. What is a Group?... 32
8.3. The Group Structure .. 33
8.4. Imagery Programs ... 34
8.5. Programming Interface for Groups .. 35

Chapter 9 Region and Mask... 36
9.1. Region ... 36
9.2. Mask ... 37
9.3. Variations .. 37

Chapter 10 Environment Variables... 38
10.1. UNIX Environment ... 38
10.2. GRASS Environment .. 38
10.3. Difference Between GRASS and UNIX Environments .. 39

Chapter 11 Compiling and Installing GRASS Programs.............. 40
11.1. gmake4.2 ... 40
11.2. Gmakefile Variables .. 40
11.3. Constructing a Gmakefile .. 41
11.4. Compilation Results... 43
11.5. Notes ... 45

Chapter 12 GIS Library ... 46
12.1. Introduction ... 46

4

12.2. Library Initialization.. 46
12.3. Diagnostic Messages.. 46
12.4. Environment and Database Information ... 47
12.5. Fundamental Database Access Routines ..49
12.6. Memory Allocation.. 55
12.7. The Region .. 55
12.8. Latitude-Longitude Databases ... 59
12.9. Raster File Processing .. 65
12.10. Raster Map Layer Support Routines .. 70
12.11. Vector File Processing .. 80
12.12. Site List Processing .. 83
12.13. General Plotting Routines .. 85
12.14. Temporary Files ... 86
12.15. Command Line Parsing ... 87
12.16. String Manipulation Functions .. 96
12.17. Enhanced UNIX Routines ... 98
12.18. Miscellaneous .. 99
12.19. Deleted Routines ... 101
12.20. GIS Library Data Structures .. 101
12.21. Loading the GIS Library.. 103

Chapter 13 Vector Library ... 104
13.1. Introduction ... 104
13.2. Changes in 4.0 from 3.0... 104
13.3. Opening and closing vector maps... 106
13.4. Leading and writing vector maps ... 107
13.5. Data Structures .. 108
13.6. Data Conversion .. 109
13.7. Miscellaneous .. 109
13.8. Routines that remain from GRASS 3.1 .. 111
13.9. Loading the Vector Library .. 111

Chapter 14 Image Library .. 112
14.1. Introduction ... 112
14.2. Group Processing... 112
14.3. Loading the Imagery Library ... 116
14.4. Imagery Library Data Structures ... 116

Chapter 15 Raster Graphics Library .. 118
15.1. Introduction ... 118
15.2. Connecting to the Driver .. 118
15.3. Colors .. 118
15.4. Basic Graphics... 119
15.5. Poly Calls .. 121

5

15.6. Raster Calls ... 122
15.7. Text ... 123
15.8. User Input .. 124
15.9. Loading the Raster Graphics Library .. 124

Chapter 16 Display Graphics Library ... 125
16.1. Introduction ... 125
16.2. Library Initialization.. 125
16.3. Frame Management ... 126
16.4. Frame Contents Management .. 127
16.5. Coordinate Transformation Routines ... 128
16.6. Raster Graphics ... 130
16.7. Window Clipping... 132
16.8. Pop-up Menus.. 132
16.9. Colors .. 133
16.10. Deleted Routines ... 133
16.11. Loading the Display Graphics Library ...133
16.12. Vector Graphics / Plotting Routines ... 134

Chapter 17 Lock Library.. 135
17.1. Introduction ... 135
17.2. Lock Routine Synopses ... 135
17.3. Use and Limitations ... 135
17.4. Loading the Lock Library .. 136

Chapter 18 Rowio Library ... 137
18.1. Introduction ... 137
18.2. Rowio Routine Synopses ... 137
18.3. Rowio Programming Considerations ... 139
18.4. Loading the Rowio Library .. 139

Chapter 19 Segment Library .. 140
19.1. Introduction ... 140
19.2. Segment Routines .. 140
19.3. How to Use the Library Routines ... 142
19.4. Loading the Segment Library ... 143

Chapter 20 Vask Library .. 144
20.1. Introduction ... 144
20.2. Vask Routine Synopses .. 144
20.3. An Example Program .. 145
20.4. Loading the Vask Library .. 146
20.5. Programming Considerations ... 147

6

Chapter 21 Digitizer/Mouse/Trackball Files 148
21.1. Rules for Digitizer Configuration Files .. 148
21.2. Digitizer Configuration File Commands .. 148
21.3. Examples of Complete Files .. 153
21.4. Digitizer File Naming Conventions ... 155

Chapter 22 Writing a Digitizer Driver.. 156
22.1. Introduction ... 156
22.2. Writing the Digitizer Device Driver ... 156
22.3. Discussion of the Finer Points (Hints) .. 160

Chapter 23 Writing a Graphics Driver 164
23.1. Introduction ... 164
23.2. Basics .. 164
23.3. Basic Routines .. 164
23.4. Optional Routines .. 167

Chapter 24 Writing a Paint Driver ... 168
24.1. Introduction ... 168
24.2. Creating a Source Directory for the Driver Code ... 168
24.3. The Paint Driver Executable Program ...168
24.4. The Device Driver Shell Script .. 171
24.5. Programming Considerations ... 173
24.6. Paint Driver Library .. 173
24.7. Compiling the Driver ... 174
24.8. Creating 125 Colors From 3 Colors ... 175

Chapter 25 Writing GRASS Shell Scripts 176
25.1. Use the Bourne Shell ... 176
25.2. How a Script Should Start ... 176
25.3. g.ask .. 176
25.4. g.findfile .. 177

7

Appendix A. Gmakefile Predefined Variables 178
Appendix B. The CELL Data Type ... 181
Appendix C. Index to GIS Library... 182
Appendix D. Index to Vector Library .. 186
Appendix E. Index to Imagery Library 187
Appendix F. Index to Display Graphics Library 188
Appendix G. Index to Raster Graphics Library 189
Appendix H. Index to Rowio Library .. 190
Appendix I. Index to Segment Library....................................... 191
Appendix J. Index toVask Library.. 192

8

Foreword

This manual represents documentation for the first revision to the Geographic Resources Analysis Support System (GRASS)
Geographic Information System (GIS) in four years with version 4.1 being replaced with 4.2.

This work was originally performed by the Environmental Division of the U.S. Army Construction Engineering Research
Laboratory (USACERL). In August, 1997, GRASS development was taken up by the GRASS Research Group at Baylor
University. Dr. Thomas T. Goforth is Chairman of the Department of Geology at Baylor University, and Steve Clamons and
Bruce Byars are the lead developers in the GRASS 4.2 project.

The original authors of the GRASS 4.1 Programmers Manual are Michael Shapiro, James Westervelt, Dave Gerdes, Majorie
Larson, and Kenneth R. Brownfield. It is upon their work that this is based, and we wish for full acknowledgement to go to
them for their efforts. Dr. James Westervelt has provided valuable insight into GRASS for this project. Dr. Robert Lozar of
USA-CERL has also been instrumental in this new release.

9

Chapter 1

Introduction

1.1 Background
The Geographic Resources Analysis Support System (GRASS) is a geographic information system (GIS) originally de-
signed and developed by researchers at the U.S. Army Construction Engineering Research Laboratory (USACERL) and now
supported and enhanced by the GRASS Research Group at Baylor University. GRASS provides software capabilities
suitable for organizing, portraying and analyzing digital spatial data.

Since the first release of GRASS software in 1985, the number of users and applications has rapidly grown. Because
GRASS is distributed with source code, user sites (including many government organizations, educational institutions, and
private firms) are able to customize and enhance GRASS to meet their own requirements. While researchers at Baylor
University maintain and support GRASS, as well as develop and organize new versions of GRASS for release, programmers
at numerous sites now work directly with GRASS source code.

1.2 Objective
Those who work with GRASS source code need detailed information on the structure and organization of the software, and
on procedures and standards for programming and documentation. The objective of this manual is to provide the necessary
information for programmers to understand and enhance GRASS software.

1.3 Approach
GRASS software is continuously updated and improved. In the past, software enhancements have been developed at various
sites, and submitted to USACERL to be shared with other sites and included in future releases of GRASS. Since CERL
announced that it would not develop any more GRASS releases, the GRASS Research Group at Baylor University has taken
over development, support, and enhancement of the public domain version. Version 4.2 is currently the latest release, and is
built largely on the GRASS 4.1 source, with the major enhancement being incorporation of contributed programs and codes.

With each new release of GRASS, more and more sites have begun working directly with GRASS source code. Sites are
encouraged to use standard procedures in development of new GRASS capabilities. Sites that develop GRASS software are
encouraged to learn and use GRASS programming libraries, and to use standard procedures for coding, commenting and
documenting software. The use of GRASS libraries and conventions will:

1. Eliminate duplication of functions that already exist in GRASS libraries;
2. Increase the capability of multiple sites to share enhancements;
3. Reduce problems in adapting contributed GRASS capabilities to new data structures and new versions of GRASS

software;
4. Provide some common elements (such as documentation and user interfaces) for users who use code contributed from

multiple sites, and reduce the learning curve associated with each contributed capability.

The first GRASS Programmer’s Manual was developed for GRASS 2.0 (released in 1987).The GRASS Programmer’s Ref-
erence Manual for GRASS 3.0 (released in 1988) was completely rewritten due to the numerous and fundamental changes
made in GRASS 3.0.

Because much of GRASS has remained consistent from 3.0 to 4.0 and 4.1 USACERL researchers elected to upgrade the 3.0
Programmer’s Manual to reflect the changes that have turned GRASS 3.0 into GRASS 4.0

The approach used in the development of this manual involves a systematic effort to describe GRASS development guide-
lines, user interfaces, data structures, programming libraries and peripheral drivers. Since it is based on the GRASS 4.1
Programmers Manual, users should already be familiar with the conventions used here.

10

1.4. Scope
Information in this manual is valid for GRASS version 4.2, released in Fall, 1997. As changes are made to GRASS libraries,
data structures, and user interfaces, elements in this manual will require updating. Plans to perform updates, and the avail-
ability of these updates, will be announced in the newsletter GRASSClippings and other GRASS information forums.

1.5. Mode of Technology Transfer
Army and Corps of Engineer organizations can acquire GRASS software from USACERL. Several other federal organiza-
tions provide distribution and support services for GRASS within their own agencies, and several educational institutions
and private firms also provide distribution, training and support services for GRASS. Current information on the status and
availability of services for GRASS can be obtained from either the Baylor University GRASS Research Group, or the USA-
CERL GRASS Information Center (see below).

This manual should prove to be a valuable resource facilitating GRASS software development efforts at the numerous
government agency, educational institutions and private firms that now use GRASS and plan to modify, enhance or custom-
ize the software. Sites that develop new analytical capabilities or peripheral drivers for GRASS are encouraged to share their
products with others in the GRASS/GIS user community. To facilitate this sharing process among user, support and devel-
opment sites, several forums have been established. These include the following: the GRASS Information Center, the GRASS
Inter-Agency Coordinating Committee, an annual GRASS/GIS User Group Meeting, GRASSClippings - a periodic newslet-
ter, andGRASSNET - an electronic mail and software retrieval forum.

The GRASS Information Center maintains: (1) a set of publications on GRASS and GRASS-related items, (2) updated
information on locations that distribute and support GRASS software and on training courses for GRASS, (3) the mailing
list for the newsletter GRASSClippings , and (4) updated information on the status of GRASS user group meetings and
software releases.

The GRASS Inter-Agency Coordinating Committee is an informal organization with members from government agencies
and other organizations that use, support and enhance GRASS. This organization sponsors the annual User Group Meeting
and the quarterly newsletter. It holds at least two meetings annually to share and coordinate GRASS plans among the
participating agencies.

The annual GRASS / GIS User Group Meeting is hosted by one of the member agencies of the Coordinating Committee.
Papers, demonstrations, and discussion panels present GRASS applications and software development issues. The meeting
provides opportunities for current and potential users to share and demonstrate new GRASS software.

The GRASSClippings newsletter is published to provide information to anyone interested in GRASS software. The news-
letter includes articles on software development, hardware options and applications of GRASS.

GRASSNET is an electronic mail forum that provides a mechanism through which GRASS user and development sites can
exchange messages. It can be reached via Arpanet, Internet and other networks.

GRASSNET also includes a library of contributed software available for users to retrieve and review. Thus, new software is
available before it is integrated into a formal release of GRASS code.

1.6. GRASS Information Center
Sites wishing to contribute code to GRASS, or wanting to participate in any of these GRASS/GIS user community forums,
should contact one of the the GRASS Information Centers, either at CERL or Baylor University at:

GRASS Research Group GRASS Information Center

Department of Geology USA-CERL P.O. Box 9005

Baylor University P.O. Box 97354 Champaign, IL, 61826-9005

Waco, Texas 76798-7354 (217)-373-7220 or (800)-USA-CERL

email: grass@baylor.edu grass@zorro.cecer.army.mil.

http://www.baylor.edu/~grass

11

Chapter 2

Development Guidelines

GRASS continues its development with several key objectives as a guide. The programmer should be aware of these and
strive to write code that blends well with existing capabilities. All objectives are based on an understanding of the needs of
the end users of GRASS.

2.1. Intended GRASS Audience
GRASS is a general purpose geographic information system. Its intended users are regional land planners, ecologists, geolo-
gists, geographers, archeologists, and landscape architects. Used to evaluate broad land use suitability, it is ideal for siting
large projects, managing parks, forest, and range land, and evaluating impacts over wide areas. These users are generally
NOT equipped to write programs or design a system. In many cases they have never used a computer or even a keyboard.

REGIONAL PLANNING TOOL -GRASS is designed for planning at the county, park, forest, or range level. It is suitable for
planning at a macro scale where the land uses are larger than 30 meters (or so, depending on the database resolu-
tion). As yet, no GRASS tools exist for the modeling and simulation of traffic, electrical, water, and sewage infra-
structure loads, or for the precise positioning of urban structures.

UTM REFERENCED -To facilitate area calculations, a planimetric projection was desired for initial GRASS development.
Funding was provided through Army military installations which were familiar with the Universal Transverse Mercator
(UTM) projection. Due to these factors, GRASS developed around the UTM coordinate system. The UTM projec-
tion allows GRASS to assume equal area cells anywhere in the database. It also makes distance calculations simple
and straightforward.

LATITUDE-LONGITUDE REFERENCING -It has been recognized that the UTM projection has limitations that make it
awkward if not impossible to use for regions that span two (or more) UTM zones. Significant capabilities have
been added to support latitude-longitude referenced data bases that will support analyses over large regions as well
global analysis. However, the development is incomplete, especially on the vector side. The programmer will find
some routines in the libraries which are specifically designed to support this projection.

INTERACTIVE -GRASS has a strong interactive component. Its multilevel design allows users to work either at a very user
friendly level, at a more flexible command level, or at a programming level.

GRAPHIC ORIENTED -Many of the functions can be accompanied by graphic output results.

FOR NONPROGRAMMER -Users of GRASS are often first-time users of a computer. To this end, it is important that the
programmer take the extra time to provide on-line help, clear prompts, and user tutorials.

INEXPENSIVE -GRASS can run on microcomputers in the under-$10,000 range. Higher-cost equipment should be neces-
sary only for providing faster analyses, and more disk and memory space.

PORTABLE -This system is intended to be as portable as possible. At the November 1986 User Group meeting, groups
interested in GRASS resoundingly stated that portability was the number one concern, ranking firmly above speed
and user friendliness. GRASS code must run on a wide variety of hardware configurations.

12

2.2. Programming Standards
Programming is done within the following guidelines.

UNIX ORIENTED -Primarily for the purpose of portability, GRASS will continue its development under the UNIX operat-
ing system environment. Programmers should accommodate both AT&T (System 5) and Berkeley (BSD) UNIX.

C LANGUAGE -All code is written in the C programming language. Some Fortran 77 code has occasionally been adopted
into the system, but problems with portability, efficiency, and legibility have resulted in most Fortran programs
being rewritten in C.

FUNCTION LEVELS -GRASS is designed within a functional level scheme. Each level is designed to perform particular
functions. Programming must be done within this scheme.

Briefly, these levels are as follows:

Specialized Interface Level -The new and occasional user would work at this level. It is expected that specialized
models, natural language interfaces, graphic pop-up menu front-ends, and fancier menus will be devel-
oped in the future. Programs developed at this level may be specifically designed for one hardware ar-
rangement.

Command Level -This is the level most used. Using the user’s login shell, GRASS commands are made available
through modification of the PATH variable. Help and on line manual commands are available.

In version 2.0, GRASS programs included both user interface and program function capabilities and were highly
interactive. GRASS 3.0 introduced complementary command-line versions of these functions in which the infor-
mation required by the program was provided by the user on the command line or in the standard input stream (with
no prompting). This provided the advanced user greater flexibility and the system analyst a high-level GIS program-
ming language in concert with other UNIX utilities. However, this resulted in a doubling of the number of com-
mands: one for the interactive form, another for the command-line form.

In GRASS 4.2 the interactive and command-line versions of a program have been “merged” into a single program
(as far as the user is concerned). This merging should be understood by programmers developing new code. It is
described in Compiling and Installing GRASS Programs. A standard command-line interface has been developed
to complement the existing interactive interface, and an attempt has been made to standardize the command names.

Programming Level -For even greater flexibility in the application of GRASS, a user has the opportunity to pro-
gram GRASS functions in the C language. The main restrictions here are that the programmer is to use the
existing GRASS function libraries to the greatest extent possible, and support both AT&T and Berkeley
UNIX.

Library Level -Work at the library level should be done with the cooperation and approval of one group. At this
writing, that group is the GRASS programming staff at USACERL. The most critical functions are those
that manipulate data. It is believed that these functions will be more permanent than the database structure.
Though the database structure may change, these functions (and the programming environment) will not.

2.3. Documentation Standards
GRASS is a public domain system. While such systems are usually inexpensive to new sites wishing to adopt them, costs
incurred in putting up the system, modifying the code, and understanding the product can be very high. To minimize these
costs, GRASS programs shall be thoroughly documented at several levels.

Source code -The source code for the functions should be accompanied by liberal amounts of descriptive variables,
algorithm explanations, and function descriptions.

On-line help -Brief help/information will be available for the new user of a program.

Online manual -Manual entries in the style of the UNIX manual entries will also be available to the user.

Tutorial -The tools that are more involved or difficult to use shall be accompanied by tutorial documents which
teach a user how to use the code. These have been written in nroff/troff using the ms macro package. Final
documents have been kept separate from the GRASS directories, though it is suggested that they appear
with appropriate “makefiles” under $GISBASE/tutorials.

13

Chapter 3

Multilevel

As introduced in the previous section, the overall GRASS design incorporates several levels:

Specialized Interfaces
Command Level
Programming Level
Library Level

Each level is associated with a different type of user interface.

3.1. General User
The general GRASS user is someone with a skill in some resource area (e.g., planning, biology, agronomy, forestry, etc.) in
which GRASS can be used to support spatial analysis. Such users have no significant computer skills, know nothing of
UNIX, and may struggle with the learning curve for GRASS. Such users should select a Specialized Interface, if available,
where they are guided through the GRASS system or a specific application in a friendly way. Programs written at this level
may take many forms in the future. The promise of a natural language capability may take form here. Current success with
graphic menu systems in other applications will lead to pleasant graphic screens with pull-down menus. Interfaces developed
at this level (and this level only) may be hardware specific. GRASS may take the form of a voice-activated system with fancy
AI capabilities on one machine, while it is driven by a pull-down menu system which is also tightly interfaced to an RDBMS
on another. All versions, however, will rely heavily on the consistent commands available at the Command Level.Itis
anticipated that specialized analysis models using little or no user input will be developed shortly, making use of UNIX shell
scripts and Command Level programs. These models will be written by system analysts and will require no knowledge of
C programming. Until improvements in speed and cost of hardware and flexibility of software are made available, most
general users of GRASS will interface the system through the Command Level.

The Command Level requires some knowledge of UNIX. The user starts up the GRASS tools individually through the
UNIX shell (commonly Bourne or Csh). Once a GRASS tool is started, the user either enters a very friendly and interactive
environment or provides information to the tool in the form of arguments on the command line. Users are not prompted
through graphics. Prompting is restricted to written interaction.

3.2. GRASS Programmer
The GRASS programmer, using an array of programming libraries, writes interactive tools and command line tools. Program-
mers must keep in mind that Special Interfaces tools will be:

a. Written for the occasional user;
b. Verbose in their prompting;
c. Accompanied by plenty of help; and
d. Give the user few options.

The programmer also writes Command Level tools. These:

a. Can run in batch (background) mode;
b. Take input from the command line, standard input, or a file;
c. Can run from a shell; and
d. Operate with a standard interface.

GRASS programmers should keep the following design goals in mind:

a. Consistent user interface;
b. Consistent database interface;
c. Functional consistency;
d. Installation consistency; and
e. Code portability.

14

As much as possible, interaction with the user (e.g., prompting for database files, or full screen input prompting) must not
vary in style from program to program. All GRASS programs must access the database in a standard manner. Functional
mechanisms (such as automatic resampling into the current region and masking of raster data) which are independent of the
particular algorithm must be incorporated in most GRASS programs. Users must be able to install GRASS (data, programs,
and source code) in a consistent manner. Finally, GRASS programs must compile and run on most (if not all) versions of
UNIX. To achieve these goals, all programming must adhere to the following guidelines:

Use C language -This language is quite standard, ensuring very good portability. All of the GRASS system libraries are
written in C. With very few exceptions, GRASS programs are also written in C. While UNIX machines offer a
Fortran 77 compiler, experience has shown that F77 code is not as portable or predictable when moved between
machines. Existing Fortran code has occasionally been adopted, but programmers often prefer to rewrite the code in
C.

Use Bourne shell -GRASS also makes use of the UNIX command interpreter to implement various function scripts, such as
menu front-ends to a suite of related functions, or application macros combining GRASS command level tools and
UNIX utilities. Portability requires that these scripts be written using the Bourne Shell (/bin/sh) and no other. See
Writing GRASS Shell Scripts.

Do not access data directly -The GRASS database is NOT guaranteed to retain its existing organization and structure.
These have changed in the past; however, the library function calls to the data have remained more consistent over
time. Plans do exist to significantly change the data organization. While the programmer should be aware of the
data capabilities and limitations, it should not be necessary to open and read data files directly.

Use GRASS Compilation Procedures -GRASS code is compiled using a special procedure 1 which is a front-end to the
UNIX make utility. This procedure allows the programmer to construct a file with make rules containing instruc-
tions for making the binary executables, manual and help entries, and other items from the directory’s contents.
However, there are no hardcoded references to other GRASS programs, libraries, or directories. Variables defining
these items are provided by the procedure and are used instead. This allows the compilation and installation process
to remain identical from system to system. This procedure is described in detail in 11 Compiling and Installing
GRASS Program.

Use GRASS libraries -Use of the existing GRASS programming libraries speeds up programming efforts. While user and
data interface may make up a large part of a new program, the programmer, using existing library functions, can
concentrate primarily on the analysis algorithms of the new tool. Such programs will maintain a consistency in data
access and (more importantly) a degree of consistency in the user interface. The libraries are listed briefly below.

GIS Library. This library contains all of the routines necessary to read and write the GRASS raster data layers and
their support files. General GRASS database access routines are also part of this library. A standardized method to
prompt the user for map names is available. The library also provides some general purpose tools like memory
allocation, string analysis, etc. Nearly all GRASS programs use routines from this library. See 12 GIS Library.

Vector Library. While GRASS is primarily a raster map analysis and display system, it also has some vector
capabilities. The principal uses of GRASS vector files are to generate raster maps and to plot base maps on top of
raster map displays.

However, it is anticipated that additional analysis and data import capabilities will be added to the vector database.
Many vector formats exist in the GIS world, but GRASS has chosen to implement its own internal vector format.
The format is a variant of arc-node. The Vector Library provides access to the GRASS vector database. See 13
Vector Library.

Segment Library. For programs that need random access to an entire map layer, the segment library provides an
efficient paging scheme for raster maps. While virtual memory operating systems perform paging, this library some-
times provides better control and efficiency of paging for raster maps. See 19 Segment Library.

Vask Library. This screen-oriented user interface is widely used in the GRASS programs. It provides the program-
mer with a simple means for displaying a particular screen layout, with defined fields where the user is prompted for

15

answers. The user, using the carriage return (or line-feed) and ctrl-k keys, moves from prompt to prompt, filling an
answer into each field. When the ESC (escape) key is struck, the answers are provided to the program for analysis.
Users have found this interface pleasant and consistent. See 20 Vask Library.

Graphics Libraries. Graphics design has been a difficult issue in GRASS development. To ensure portability and
competitive bidding, GRASS has been designed with graphics flexibility in mind. This has meant restricting graph-
ics to a minimal set of graphics primitives, which generally do not make full use of the graphics capabilities on all
GRASS machines. Two libraries, displaylib and rasterlib , are involved in generating graphics. The rasterlib
contains the primitive graphics commands used by GRASS. At run time, programs using this library communicate
(through fifo files) with another program which translates the graphics commands into graphics on the desired
device. Each time the program runs, it may be talking to a different graphics device. Functions available in the
rasterlib include color setting and choosing, line drawing, mouse access (with three types of cursor), raster draw-
ing operations, and text drawing. Generally, this library is used in conjunction with the displaylib.The displaylib
provides graphics frame management routines, coordinate conversion capabilities, and raster data to raster graphic
conversions. See 16 Display Graphics Library and 15 Raster Graphics Library.

3.3. Driver Programmer
GRASS programs are written to be portable. To this end, a tremendous amount of modularity is designed into the system.
Throughout its development, GRASS programs have become increasingly specialized. The original monolithic approach
continues to fragment into ever smaller pieces. Smaller pieces will allow future developers and users ever more variability in
the mixing of the tools. This modularity has been manifested in the graphics design. A graphics-oriented tool connects, at
run time, to a graphics driver (or translator) program. This separate process understands the standard graphics commands
generated by the GRASS tool, and makes the appropriate graphics calls to a particular graphics device. Each graphics device
available to a user is accompanied by a driver program, and each program understands the graphics calls of the application
program. Porting of GRASS to a new system primarily means the development of one new graphics driver. See 23 Writing a
Graphics Driver.

Those sites using the digitizing software of GRASS must also provide driver routines for their digitizer. These routines,
unlike the above graphics calls, are compiled directly into the digitizing programs. See 22 Writing a Digitizer Driver.
Similarly, GRASS sites may wish to write code to support different hardcopy color printers (inkjet, thermal, etc.). See 24
Writing a Paint Driver.

3.4. GRASS System Designer
GRASS system design has mostly been done at one location: USACERL. However, in August, 1997, the GRASS Research
Group at Baylor University took over development of the public-domain version of GRASS. One, and only one site must be
responsible for the design of the system at the database and fundamental library level. As the software is public domain, sites
are free to do their own work. However, the strength of future GRASS releases depends on cooperation and sharing of
software. Therefore, it is strongly encouraged that database design and database library development be fully coordi-
nated with GRASS staff at Baylor University

16

Chapter 4

Database Structure

This section presents the programmer interested in developing new applications with an explanation of the structure of the
GRASS databases, as implemented under the UNIX operating system.

4.1. Programming Interface
GRASS Programmers are provided with the GIS Library, which interfaces with the GRASS database. It is described in detail
in 12 GIS Library. Programmers should use this library to the fullest extent possible. In fact, a programmer will find that use
of the library will make knowledge of the database structure almost unnecessary. GRASS programs are not written with
specific database names or directories hardcoded into them. The user is allowed to select the database or change it at will.
The database name, its location within the UNIX file system, and other related database information are stored as variables
in a hidden file in the user’s home directory. GRASS programs access this information via routines in the GIS Library. The
variables that specify the database are described briefly below; see 10 Environment Variables for more details about these
and other environment variables.

Note. These GRASS environment variables may also be cast into the UNIX environment to make them accessible for shell
scripts. In the discussion below, these variables will appear preceded by a dollar sign ($). However, C programs should not
access the GRASS environment variables using the UNIX getenv() since they do not originate in the UNIX environment.
GIS Library routines, such as G_getenv, must be used instead.

4.2. GISDBASE
The database for GRASS makes use of the UNIX hierarchical directory structure. The top level directory is known as
GISDBASE. Users specify this directory when entering GRASS. The full name of this directory is contained in the UNIX
environment variable $GISDBASE, and is returned by library routine G_gisdbase.

4.3. Locations
Subdirectories under the GISDBASE are known as locations. Locations are independent databases. Users select a location
when entering GRASS. All database queries and modifications are made to this location only. It is not possible to simulta-
neously access multiple locations. The currently selected location is contained in the environment variable
$LOCATION_NAME, and is returned by the library routine G_location.

GISDBASE

________________________________ |_______________________________
| | | |

 location.1 location.2 location.3 ...

When users select a location, they are actually selecting one of the location directories.

Note. GISDBASE may be changed to the parent directory of other sets of locations, notably on other system hard disks for
database management purposes. Note that GRASS programs will only work within one location under one GISDBASE
directory in a giv en GRASS session.

4.4. Mapsets
Subdirectories under any location are known as mapsets. Users select a mapset when entering GRASS. New mapsets can be
created during the selection step. The selected mapset is known as the current mapset. It is named in the environment variable
$MAPSET and returned by G_mapset.

LOCATION

__

mapset.1 mapset.2 mapset.3 ... PERMANENT

Modifications to the database can only be made in the current mapset. Users may onlyselect (and thus modify) a mapset that

17

they own (i.e., have created). However, data in all mapsets for a given location can be read by anyone (unless prevented by
UNIX file permissions). See 4.7 Database Access Rules for more details. When users select a mapset, they are actually
selecting one of the mapset directories.

Note. The full UNIX directory name for the current mapset is $GISDBASE/ $LOCATION_NAME/$MAPSET and is
returned by the library routine G_location_path.

Note. Each location will have a special mapset called PERMANENT that contains non volatile data for the location that all
users will use. However, it also contains some information about the location itself that is not found in other mapsets. See 4.6
Permanent Mapset .

4.5. Mapset Structure
Mapsets will contain files and subdirectories, known as database elements. In the diagram below, the elements are indicated
by a trailing /.

MAPSET

 SEARCH_PATH WIND cats/ cell/ paint/ windows/ ...

4.5.1. Mapset Files

The following is a list of some of the mapset files used by GRASS programs:

files function
GROUP current imagery group
SEARCH_PATH mapset search path
WIND current region

This list may grow as GRASS grows. The GROUP file records the current imagery group selected by the user, and is used
only by imagery functions. The other two files are fundamental to all of GRASS. These are WIND and SEARCH_PATH.

WIND is the current region. This file is created when the mapset is created and is modified by the g.region command. The
contents of WIND are returned by G_get_window. See 9.1 Region for a discussion of the GRASS region.

SEARCH_PATH contains the mapset search path. This file is created and modified by the g.mapsets command. It contains
a list of mapsets to be used for finding database files. When users enter a database file name without specifying a specific
mapset, the mapsets in this search path are searched to find the file. Library routines that look for database files follow and
use the mapset search path. See 4.7.1 Mapset Search Path for more information about the mapset search path.

4.5.2. Elements
Subdirectories under a mapset are the database elements. Elements are not created when the mapset is created, but are created
dynamically when referenced by the application programs. Mapset data reside in files under these elements.

The dynamic creation of database elements makes adding new database elements simple since no reconfiguration of existing
mapsets is required. However, the programmer must be aware of the database elements already used by currently existing
programs when creating new elements. Furthermore, as development occurs outside USACERL, guidelines must be devel-
oped for introducing new element names to avoid using the same element for two div erse purposes.

Programmers using shell scripts must exercise care. It is not safe to assume that a mapset has all, or any, database elements
(especially brand new mapsets). Certain GRASS commands automatically create the element when it is referenced (e.g.,
g.ask). In general, however, elements are only created when a new file is to be created in the element. It is wise to explicitly
check for the existence of database elements.

Here is list of some of the elements used by GRASS programs written at USACERL:

18

element function
cell binary raster file
cellhd header files for raster maps
cats category information for raster maps
colr color table for raster maps
colr2 secondary color tables for raster maps
cell_misc miscellaneous raster map support files
hist history information for raster maps
dig binary vector data
dig_ascii ascii vector data
dig_att vector attribute support
dig_cats vector category label support
dig_plus vector topology support
reg digitizer point registration
bdlg binary dlg files
dlg ascii dlg files
icons icon files used by p.map
paint label and comment files used by p.map
group imagery group support data
site_lists site lists for sites related programs
windows predefined regions
COMBINE r.combine scripts
WEIGHT r.weight scripts

Note. The mapset database elements can be simple directory names (e.g., cats, colr) or multilevel directory names (e.g., paint/
labels, group/xyz/subgroup/abc). The library rou-tines that create the element will create the top level directory and all
subdirectories as well.

4.6. Permanent Mapset
Each location must have a PERMANENT mapset. This mapset not only contains original raster and vector files that must not
be modified, but also two special files that are only found in this mapset. These files are MYNAME and DEFAULT_WIND
and are never modified by GRASS software.

MYNAME contains a single line descriptive name for the location. This name is returned by the routine G_myname.

DEFAULT_WIND contains the default region for the location. The contents of this file are returned by G_get_default_window.
This file is used to initialize the WIND file when GRASS creates a new mapset. and can be used by the user as a reference
region at any time.

4.7. Database Access Rules
GRASS database access is controlled at the mapset level. There are three simple rules:

1 A user can select a mapset as the current mapset only if the user is the owner of the mapset directory (see 4.4
Mapsets).

2 GRASS will create or modify files only in the current mapset.

3 Files in all mapsets may be read by anyone (see 4.7.1 Mapset search Path) unless prohibited by normal UNIX file
permissions (see 4.7.2 UNIX File Permissions).

19

4.7.1. Mapset Search Path

When users specify a new data file, there is no ambiguity about the mapset in which to create the file: it is created in the
current mapset. However, when users specify an existing data file, the database must be searched to find the file. For ex-
ample, if the user wants to display the “soils” raster map, the system looks in the various database mapsets for a raster file
named “soils.” The user controls which mapsets are searched by setting the mapset search path, which is simply a list of
mapsets. Each mapset is examined in turn, and the first “soils” raster file found is the one that is displayed. Thus users can
access data from other users’ mapsets through the choice of the search path.

Users set the search path using the g.mapsets command.

Note. If there were more than one “soils” file, the mapset search mechanism returns the first one found. If the user wishes to
override the search path, then a specific mapset could be specified along with the file name. For example, the user could
request that “soils@PERMANENT” be displayed.

4.7.2. UNIX File Permissions

GRASS creates all files with read/write permission enabled for the owner and read only for everyone else; directories are
created with read/write/search permission enabled for the owner and read/search only for everyone else. This implies that all
users can read anyone else’s data files. Read access to all files in a mapset can be controlled by removing (or adding) the read
and search permissions on the mapset directory itself using the GRASS g.access command, without adversely affecting
GRASS programs. If read and search permissions are removed, then no other user will be able to read any file in your mapset.

Warning. Since the PERMANENT mapset contains global database information, all users must have read and search access
to the PERMANENT mapset directory. Do not remove the read and search permissions from PERMANENT.

20

Chapter 5

Raster Maps

This chapter provides an explanation of how raster map layers are accommodated in the GRASS database.

5.1. What is a Raster Map Layer?
GRASS raster map layers can be conceptualized, by the GRASS programmer as well as the user, as representing information
from a paper map, a satellite image, or a map resulting from the interpretation of other maps. Usually the information in a map
layer is related by a common theme (e.g., soils, or landcover, or roads, etc.). GRASS raster data are stored as a matrix of grid
cells . Each grid cell covers a known, rectangular (generally square) patch of land. Each raster cell is assigned a single integer
attribute value called the category number. For example, assume the land cover map covers a state park. The grid cell in the
upper-left corner of the map is category 2 (which may represent prairie); the next grid cell to the east is category 3 (for
forest); and so on.

 land cover

2 3 3 3 4 4
2 2 3 3 4 4
2 2 3 3 4 4
1 2 3 3 3 4
1 1 1 3 3 4
1 1 3 3 4 4

1 = urban 3 = forest
2 = prairie 4 = wetlands

In addition to the raster file itself, there are a number of support files for each raster map layer. The files which comprise a
raster map layer all have the same name, but each resides in a different database directory under the mapset. These database
directories are:

directory function
cell binary raster (cell) files

cellhd raster header files

cats raster map category information
colr raster map color tables

colr2 alternate raster map color tables

hist raster map history information
cell_misc miscellaneous raster map support information

For example, a raster map named soils would have the files cell/soils, cellhd/soils, colr/soils, cats/soils, etc.

Note. Database directories are also known as database elements. See 4.4 Mapsets for a description of database elements.

Note. GIS Library routines which read and write raster files are described in 12.9 Raster File Processing:

5.2. Raster File Format
The programmer should think of the raster data file as a two-dimensional matrix (i.e., an array of rows and columns) of
integer values. Each grid cell is stored in the file as one to four 8-bit bytes of data. An NxM raster file will contain N rows,
each row containing M columns of cells.

The physical structure of a raster file can take one of 3 formats: uncompressed, compressed, or reclassed.

Uncompressed format. The uncompressed raster file actually looks like an NxM matrix. Each byte (or set of bytes for
multibyte data) represents a cell of the raster map layer. The physical size of the file, in bytes, will be rows*cols*bytes-per-
cell.

21

Compressed format. The compressed format uses a run-length encoding schema to reduce the amount of disk required to
store the raster file. Run-length encoding means that sequences of the same data value are stored as a single byte repeat count
followed by a data value. If the data is single byte data, then each pair is 2 bytes. If the data is 2 byte data, then each pair is
3 bytes, etc. (see Multibyte data format below). The rows are encoded independently; the number of bytes per cell is
constant within a row, but may vary from row to row. Also if run-length encoding results in a larger row, then the row is
stored non-run-length encoded. And finally, since each row may have a different length, there is an index to each row stored
at the beginning of the file.

Reclass layers. Reclass map layers do not contain any data, but are references to another map layer along with a schema to
reclassify the categories of the referenced map layer. The reclass file itself contains no useful information. The reclass
information is stored in the raster header file.

Multibyte data format. When the data values in the raster file require more than one byte, they are stored in big-endian
format, which is to say as a base 256 number with the most significant digit first.

Examples:

cell value base 256 stored as
868 = 3*256 + 100 |3|100|
137,304 = 2*256 2 + 24*256 + 88 |2|24|88|
174,058,106 = 10*256 3 + 95*256 2 + 234*256 + 122|10|95|234|122|

Negative values are stored as a signed quantity, i.e., with the highest bit set to 1:

cell value base 256 stored as

1 = -(1) |1|0|0|0|1|
868 = -(3*256 + 100) |1|0|0|3|100|
137,304 = -(2*256 2 + 24*256 + 88) |1|0|2|24|88|
174,058,106 = -(10*256 3 + 95*256 2 + 234*256 + 122)|1|10|95|234|122|

All data values in a given row are stored using the same number of bytes. This means that if the value 868, which uses 2 bytes,
occurred in a row that uses 3 bytes to represent the largest data value, 868 would be stored as |0|3|100|. Also, one row may
only require 2 bytes to store its data values, another 4 bytes, and yet another 1 byte. The rows are stored independently and
would be stored using 2 bytes, 4 bytes, and 1 byte respectively.

File portability. The multibyte format described above is (except possibly for negative values) machine independent. If
raster files are to be moved to a machine with a different cpu, or accessed using a heterogeneous network file system (NFS),
the following guidelines should be kept in mind. All 4.2 format raster files will transfer between machines, with two
restrictions: (1) if the file contains negative values, the size of an integer on the two machines must be the same; and (2) the
size of the file must be within the seek capability of the lseek() call. The pre-3.0 compressed format is not stored in a
machine-independent format, and cannot generally be used for intermachine transfer, unless the two machines have the same
integer and long integer format.

5.3. Raster Header Format
The raster file itself has no information about how many rows and columns of data it contains, or which part of the earth the
layer covers. This information is in the raster header file. The format of the raster header depends on whether the map layer
is a regular map layer or a reclass layer.

Note. GIS Library routines which read and write the raster header file are described in 12.10.1 Raster Header File.

5.3.1. Regular Format

The regular raster header contains the information describing the physical characteristics of the raster file. The raster header
has the following fields:

raster header
proj: 1
zone: 18
north: 4660000
south: 4570000

22

east : 770000
west : 710000
e-w resol: 50
n-s resol: 100
rows: 900
cols: 1200
format : 0
compressed: 0

proj, zone

The projection field specifies the type of cartographic projection:

0 is unreferenced x,y (imagery data)

1 is UTM

2 is State Plane

3 is Latitude-Longitude

Others may be added in the future. The zone field is the projection zone. In the example above, the projection is UTM,
the zone is 18.

north, south, east, west

The geographic boundaries of the raster file are described by the north, south, east, and west fields. These values
describe the lines which bound the map at its edges. These lines do NOT pass through the center of the grid
cells at the edge of the map, but along the edge of the map itself.

n-s resol, e-w resol

The fields e-w resol and n-s resol describe the size of each grid cell in the map layer in physical measurement units
(e.g., meters in a UTM database). They are also called the grid cell resolution. The n-s resol is the length of a grid
cell from north to south. The e-w resol is the length of a grid cell from east to west. As can be noted, cells need not
be square.

rows, cols

The fields rows and cols describe the number of rows and columns in the raster matrix.

f
ormat

The format field describes how many bytes per cell are required to represent the raster data. 0 means 1 byte, 1 means
2 bytes, etc. compressed The compressed field indicates whether the raster file is in compressed format or not : 1
means it is compressed and 0 means it is not. If this field is missing, then the raster file was produced prior to
GRASS 3.0 and the compression indication is encoded in the raster file itself.

Note. If the rows and columns of the raster matrix are not stored in the raster header, they are computed from the geographic
boundaries as follows:

rows = (north - south) / (ns resol)

cols = (east - west) / (ew resol)

If the rows and columns of the raster matrix are stored in the raster header, the resolution values are computed from the
geographic boundaries as follows:

ns resol = (north - south) / (rows)

ew resol = (east - west) / (cols) development.

23

5.3.2. Reclass Format

If the raster file is a reclass file, the raster header does not have the information mentioned above. It will have the name of the
referenced raster file and the category reclassification table.

reclass header
reclass
name: county
mapset : PERMANENT
#5 first category in reclass
1 5 is reclassified to 1
0 6 is reclassified to 0
1 7 is reclassified to 1
0 8 is reclassified to 0
2 9 is reclassified to 2

In this case, the library routines will use this information to open the referenced raster file in place of the reclass file and
convert the raster data according to the reclass scheme. Also, the referenced raster header is used as the raster header.

5.4. Raster Category File Format
The category file contains the largest category value which occurs in the data, a title for the map layer, an automatic label
generation capability, and a one line label for each category.

category file
5 categories
title for map layer
<automatic label format>
<automatic label parameters>
0:no data
1:description for category 1
2:description for category 2
3:description for category 3
5:description for category 5

The number which follows the # on the first line is the largest category value in the raster file. The next line is a title for the
map layer. The next two lines are used for automatic label generation. They are used to create labels for categories which do
not have explicit labels. (The automatic label capability is not normally used in most map layers, in which case the format
line is a blank line and the parameters line is: 0.0 0.0 0.0 0.0.) Category labels follow on the remaining lines. The format is
cat : label.

The first four lines of the file are required. The remaining lines need only appear if categories are to be labeled.

Note. GIS Library routines which read and write the raster category file are described in 12.10.2 Raster Category File.

5.5. Raster Color Table Format
The GRASS raster color tables and associated programming interface have undergone a fairly major revision to resolve
problems presented by raster maps that have a large range of data values. The previous design used arrays to store a color for
each data value between the minimum and maximum values in the raster map. This array structure was also reflected in the
format of the color table file—each color stored as a single line in the color file. Because GRASS raster maps can have data
values in the range ± 2147483647 this method of storing color information is clearly untenable.

GRASS 4.2 solves the above problem by representing color tables as linear ramps for intervals of data values. Colors are
specified (and stored) for the endpoints of each interval. Colors for values between endpoints are not stored but are com-
puted using a linear interpolation scheme.

24

The following is an example 4.2 color file:

4.2 color table file

% 1387 1801

1387:255:85:85 1456:170:170:0 colors for categories 1387-1456

1456:170:170:0 1525:85:255:85 colors for categories 1456-1525

1525:85:255:85 1594:0:170:170 colors for categories 15251594

1594:0:170:170 1663:85:85:255 colors for categories 1594-1663

1663:85:85:255 1732:170:0:170 colors for categories 1663-1732

1732:170:0:170 1801:255:85:85 colors for categories 1732-1801

The first line is a % character (to indicate that this is a 4.x format color file) and two numbers indicating the minimum and
maximum data values which have colors. The rest of the file are the color descriptors. In this example, the minimum and
maximum values are 1387 and 1801. Looking at the first color line, the color for category 1387 is red=255, green=85,
blue=85; the color for category 1456 is red=170, green=170, blue=0. The color for category 1400 is calculated from the
colors for categories 1387 and 1456:

red= interpolate(255,170) = 239

green = interpolate(85,170) = 101

blue = interpolate(85,0) = 69

There are other formats which are simply variants of this format. For example, if the red, green, and blue intensities are all the
same, then only the “red” value appears. This next example defines a gray scale color table:

4.2 color table file

% 1387 1801
1387:0 1801:255

Also, if the starting and ending categories are the same, only the first appears:

4.2 color table file

%1 6
1:34:179:112
2:233:110:15
3:127
4:43:135:33
5:70:7:52
6:93:210:163

Note. GIS Library routines which read and write the raster color table are described in 12.10.3 Raster Color Table.

5.6. Raster History File
The history file contains historical information about the raster map: creator, date of creation, comments, etc. It is generated
automatically along with the raster file. In most applications, the programmer need not be concerned with the history file.
Occasionally a program might put information into this file not known or readily available to the user, such as information
about a satellite image: sun angles, dates, etc. The GRASS r.info program allows the user to view this information, and the
r.support program allows the user to update it. It is the user’s responsibility to maintain this file.

Note. GIS Library routines which read and write the raster history file are described in 12.10.4 Raster History File.

25

5.7. Raster Range File
The range file contains the minimum and maximum values which occur in a raster file. It is generated automatically for all
new raster files. This file lives in the cell_misc element as “cell_misc/name/range” where name is the related raster file name.
It contains one line with four integer values. These represent the minimum and maximum negative values, and the minimum
and maximum positive values in the raster file. If there are no negative values, then the first pair of numbers will be zero. If
there are no positive values, then the second pair of numbers will be zero.

Note. GIS Library routines which read and write the raster range file are described in 12.6.5 Raster Range File.

26

Chapter 6

Vector Maps

This chapter provides an explanation of how vector map layers are accommodated in the GRASS database.

6.1. What is a Vector Map Layer?
GRASS vector maps are stored in an arc-node representation, consisting of nonintersecting curves called arcs. An arc is
stored as a series of x,y coordinate pairs. The two endpoints of an arc are called nodes. Two consecutive x,y pairs define an
arc segment.

The arcs, either singly, or in combination with others, form higher level map features: lines (e.g., roads or streams) or areas
(e.g., farms or forest stands). Arcs that form linear features are sometimes called lines, and arcs that outline areas are called
area edges or area lines.

Each map feature is assigned a single integer attribute value called the category number. For example, assume a vector file
contains land cover information for a state park. One area may be assigned category 2 (perhaps representing prairie); another
is assigned category 3 (for forest); and so on. Another vector file which contains road information may have some roads
assigned category 1 (for paved roads); other roads may be assigned category 2 (for gravel roads); etc. See 5.1 What is a Raster
Map Layer? for more information about GRASS category values.

A vector map layer is stored in a number of data files. The files which comprise a single vector map layer all have the same
name, but each resides in a different database directory under the mapset. These database directories are:

directory function
dig binary arc file
dig_ascii ascii arc file
dig_att vector category attribute file
dig_cats vector category labels
dig_plus vector index/pointer file
reg digitizer registration points

For example, a map layer named soils would have the files dig/soils, dig_att/soils, dig_plus/soils, dig_ascii/soils, dig_cats/
soils, reg/soils, etc.

Note. Vector files are also called digit files, since they are created and modified by the GRASS digitizing program v.digit.

Note. When referring to one of the vector map layer files, the directory name is used. For example, the file under the dig
directory is called the dig file.

Note. Library routines which read and write vector files are described in 13 Vector Library.

6.2. Ascii Arc File Format
The arc information is stored in a binary format in the dig file. The format of this file is reflected in the ascii representation
stored in the dig_ascii file. It is the ascii version which is described here.

The dig_ascii file has two sections: a header section, and a section containing the arcs.

27

6.2.1. Header Section
The header contains historical information, a description of the map, and its location in the universe. It consists of fourteen
entries. Each entry has a label identifying the type of information, followed by the information. The format of the header is:

label format description

ORGANIZATION: text (max 29 characters)* organization that digitized the data

DIGIT DATE: text (max 19 characters)* date the data was digitized

DIGIT NAME: text (max 19 characters)* person who digitized the data

MAP NAME: text (max 40 characters)* title of the original source map

MAP DATE: text (max 10 characters)* date of the original source map

OTHER INFO: text (max 72 characters)* other comments about the map

MAP SCALE: integer scale of the original source map
ZONE: integer zone of the map (e.g., UTM zone)
WEST EDGE: real number (double) western edge of the entire map †

EAST EDGE: real number (double) eastern edge of the entire map †

SOUTH EDGE: real number (double) southern edge of the entire map †

NORTH EDGE: real number (double) northern edge of the entire map †

MAP THRESH: real number (double) digitizing resolution ‡
VERTI: (no data) marks the end of the header section

* Currently, GRASS programs which read the header information are not tolerant of text fields which exceed these limits. If
the limits are exceeded, the ascii to binary conversion will probably fail.
† The edges of the map describe a region which should encompass all the data in the vector file.

‡ The MAP THRESH is set by the v.digit program. If the data comes from outside GRASS, this field can be set to 0.0.

The labels start in column 1 and continue through column 14. Labels are uppercase, left justified, end with a colon, and
blank padded to column 14. The information starts in column 15. For example:

ORGANIZATION: US Army CERL
DIGIT DATE: 03/18/88
DIGIT NAME: grass
MAP NAME: Urbana, IL.

MAP DATE: 1975

OTHER INFO: USGS sw/4 urbana 15’ quad. N4000-W8807.5/7.5

MAP SCALE: 24000
ZONE: 16
WEST EDGE: 383000.00
EAST EDGE: 404000.00
SOUTH EDGE: 4429000.00
NORTH EDGE: 4456000.00
MAP THRESH: 0.00
VERTI:

6.2.2. Arc Section

The arc information appears in the second section of the dig_ascii file (following VERTI:

which marks the end of the header section). Each arc consists of a description entry, followed by a series of coordinate pairs.
The description specifies both the type of arc (A for area edge, or L for line), and the number of points (coordinate pairs) in
the arc. Then the points follow.

28

For example:

A 5

4434456.04 388142.16

4434446.65 388202.64

4434407.49 390524.38
4434107.06 390523.59
4433326.51 390526.48
L 3
4434862.31 392043.33
4434872.42 394662.14
4434871.44 398094.75
A 3
4454747.38 396579.60
4454722.69 393539.73
4454703.68 390786.90

In this example, the first arc is an area edge and has 5 points. The second arc is part of a linear feature and has 3 points. The
third arc is another area edge and has 3 points.

The arc description has the letter A or L in the first column, followed by at least one space, and followed by the number of
points.

Point entries start with a space, and have at least one space between the two coordinate values.

Note. The points are stored as y,x (i.e., north, east), which is the reverse of the way GRASS usually represents geographic
coordinates.

Note. If the v.digit program has deleted an arc, the arc type will be represented using a lower case letter (i.e., l instead of L,
a instead of A). Of course, this will only be manifest when a binary dig file with a deleted arc is converted to the ascii
dig_ascii file.

6.3. Vector Category Attribute File
As was mentioned in 6.1 What is a Vector Map Layer?, each feature in the vector map layer has a category number assigned
to it. The category number for each map feature is not stored in the dig file itself, but in the dig_att file. The dig_att file is
an ascii file that has multiple entries, each with the same format. Each entry refers to one map feature, and specifies the
feature type (area or line), an x,y marker, and a category number.

For example:

A 389668.32 4433900.99 7

L 395103.96 4434881.19 2

In this example, an area feature is assigned category 7, and a linear feature is assigned category 2.

The x,y marker is used to find the map feature in the dig file. It must be located so that it uniquely identifies its related map
feature. In particular, an area marker must be inside the area, and a line marker must be closer to its related line than to any
other line (preferably on the line) and not at a node.

If multiple entries identify the same map feature, only one will be used (currently thee last entry).

A map feature which has no entry in this file is considered to be unlabeled. This means that during the vector to raster
conversion (i.e., v.to.rast), unlabeled areas will convert as category zero, and unlabeled lines will be ignored.

29

The format of this file is rather strict, and is described in the following table:

columns data
1 Type of map feature (A or L)*
2-3 spaces
4-15 Easting (x) of the marker, right justified
16-17 spaces
18-29 Northing (y) of the marker, right justified
30-31 spaces
32-39 Category number, right justified
40-49 spaces
50 newline †

* Other types, such as point, may be allowed in the future.
† UNIX text files are terminated with a newline. Therefore, each entry will appear as 49 characters. The entire file size should
be a multiple of 50.

This format is required by programs which modify the vector map (e.g., v.digit). Programs which only read the vector map
accept a looser format : the feature type must start in column 1; the items must be separated by at least one space; and the
entries must be less than 50 characters. Also, the program v.support will convert the looser format to this stricter format.

Note. The marker is specified as x,y (i.e., east, north), which is the way GRASS usually represents geographic coordinates,
but which is reverse of the way the arcs are stored in the dig_ascii file.

6.4. Vector Category Label File
Each category in the vector map layer may have a one-line description. These category labels are stored in the dig_cats file.
The format of this file is identical to the raster category file described in 5.4 Raster Category File Format, and the reader is
referred to that section for details.

Note. The program v.support allows the user to enter and modify the vector category labels. The program v.to.rast copies the
dig_cats file to the raster category file during the vector to raster conversion.

Note. Library routines which read and write the dig_cats file are described under 12.11.6 Vector Category File.

6.5. Vector Index and Pointer File
The dig_plus file contains information that accelerates vector queries. It is created by the program build.vect (which is run by
v.digit when a vector file is created or modified, and by v.support at user request) from the data in the dig and dig_att files.
For this reason, and since the internal structure of the dig_plus file is complex, the format of this file will not be described.

6.6. Digitizer Registration Points File
The reg file is an ascii file used by the v.digit program to store map registration control points. Each map registration point
has one entry with the easting and northing of the map control point. For example:

383000.000000 4429000.000000

383000.000000 4456000.000000

404000.000000 4456000.000000

404000.000000 4429000.000000

Note. This file is used by v.digit only. It is not used by any other program in GRASS.

6.7. Vector Topology Rules

30

The following rules apply to the vector data:

1. Arcs should not cross each other (i.e., arcs which would cross must be split at their intersection to form distinct arcs).

2. Arcs which share nodes must end at exactly the same points (i.e., must be snapped together). This is particularly
important since nodes are not explicitly represented in the arc file, but only implicitly as endpoints of arcs.

3. Common boundaries should appear only once (i.e., should not be double digitized).

4. Areas must be explicitly closed. This means that it must be possible to complete each area by following one or more area
edges that are connected by common nodes, and that such tracings result in closed areas.

5. It is recommended that area features and linear features be placed in separate layers. However if area features and linear
features must appear in one layer, common boundaries should be digitized only once. An area edge that is also a line
(e.g., a road which is also a field boundary), should be digitized as an area edge (i.e., arc type A) to complete the area.
The area feature should be labeled as an area (i.e., feature type A in the dig_att file). Additionally, the common boundary
arc itself (i.e., the area edge which is also a line) should be labeled as a line (i.e., feature type L in the dig_att file) to
identify it as a linear feature.

6.8. Importing Vector Files Into GRASS
The following files are required or recommended for importing vector files from other systems into GRASS:

dig_ascii

The dig_ascii file, described in 6.2 Ascii Arc File Format, is required.

dig_att

The dig_att file, described in 6.3 Vector Category Attribute File, is essentially required. While the dig_ascii file
alone is sufficient for simple vector display, the dig_att file is required for vector to raster conversion, as well as
more sophisticated vector query.

dig_cats
The dig_cats file, described in 6.4 Vector Category Label File, while not required, allows map feature descriptions
to be imported as well.

Note. The dig_plus file, described in 6.5 Vector Index and Pointer File, is created by the GRASS program v.import when
converting the dig_ascii file to the binary dig file.

31

Chapter 7

Point Data: Site List Files

This section describes how point data is currently accommodated in the GRASS database.

7.1. What is a Site List?
Point data is currently stored in ascii files called site lists or site files. These files are used by the s.menu program, which was
developed as an application within GRASS to aid in archeological site predictive modeling. The site list files were designed
for use by this program, but have since become the principal data structure for point data.

7.2. Site File Format
Site files are ascii files stored under the site_lists database element. The format of a site file is best explained by example:

name | sample
desc | sample site list
728220 | 5182440 | site 27
727060 | 5181710 | site 28
725500 | 5184000 | site 29
719800 | 5187200 | site 30

name

This line contains the name of the site list file, and is printed on all the reports generated by the s.menu program.
The word name must be all lower case letters.

It is permissible for this line to be missing, since the s.menu program will add a name record using the name of the
site list file itself.

desc
This line contains a description of the site list file, and is printed on all the reports generated by the s.menu
program. The word desc must be all lower case letters.

It is also permissible for this line to be missing, in which case the site list will have no description.

points

The remaining lines are point records. Each site is described by a point record.

The format for this record is:

east | north | description

The east and north fields represent the geographic coordinates (easting and northing) of the site. The description
field provides a one line text description (label) of the site, and is optional.

comments

Blank lines, and lines beginning with #, are accepted (and ignored).

7.3. Programming Interface to Site Files
The programming interface to the site list files is described in 12.12 Site List Processing and the programmer should refer to
that section for details.

32

Chapter 8

Image Data: Groups

This chapter provides an explanation of how imagery data are accommodated in the GRASS database.

8.1. Introduction
Remotely sensed images are captured for computer processing by satellite or airborne sensors by filtering radiation emanat-
ing from the image into various electromagnetic wavelength bands, converting the overall intensity for each band to digital
format, and storing the values on computer compatible media such as magnetic tape. Color and color infrared photographs
are optically scanned to convert the red, green, and blue wav elength bands in the photograph into a digital format as well.

The digital format used by image data is basically a raster format. GRASS imagery programs which extract image data from
magnetic tape extract the band data into cell files in a GRASS database. Each band becomes a separate cell file, with
standard GRASS data layer support, and can be displayed and analyzed just like any other cell file. However, since the band
files are extracted as individual cell files, it is necessary to have a mechanism to maintain a relationship between band files
from the same image as well as cell files derived from the band files. The GRASS group database structure accomplishes this
goal.

8.2. What is a Group?
The group is a database mechanism which provides the following:

(1) A list of related cell files,
(2) A place to store control points for image registration and rectification, and
(3) A place to store spectral signatures, image statistics, etc., which are needed by image classification procedures.

8.2.1. A List of Cell Files
The essential feature of a group is that it has a list of cell files that belong in the group. These can be band data extracted
from the same data tape, or cell files derived from the original band files. Therefore, the group provides a convenient
“handle” for related image data; i.e., referring to the group is equivalent to referring to all the band files at once.

8.2.2. Image Registration and Rectification

The group also provides a database mechanism for image registration and rectification. The band data extracted from tapes
are usually unregistered data. This means that the GRASS software does not know the Earth coordinates for pixels in the
image. The only coordinates known at the time of extraction are the columns and the rows relative to the way the data was
stored on the tape.

Image registration is the process of associating Earth coordinates with pixels on the image. Image rectification is the process
of converting the image files to the new coordinate system based on the registration.

Image registration is applied to a group, rather than to individual cell files. The user displays any of the cell files in a group
on the graphics monitor and then marks control points on the image, assigning Earth coordinates to each control point. The
control points are stored in the group, allowing all related group files to be registered in one step rather than individually.

Image rectification is applied to individual cell files, with the control points for the group used to control the rectification.
The rectified cell files are placed into another database known as the target database. Rectification can be applied to any or
all of the cell files associated with a group.

8.2.3. Image Classification
Image classification methods process all or a subset of the band files as a unit. For example, a clustering algorithm generates
spectral signatures which are then used by a maximum likelihood classifier to produce a landcover map.

Sometimes only a subset of the band files are used during image classification. The signatures must be associated only with
the cell files actually used in the analysis. Therefore, within a group, subgroups can be formed which list only the band files
to be “subgrouped” for classification purposes. The signatures are stored with the subgroup. Multiple subgroups can be
created within a group, which allows different classifications to be run with different combinations of band files.

33

8.3. The Group Structure
Groups live in the GRASS database under the group database element. The structure of a group can be seen in the following
diagram. A trailing / indicates a directory.

group/

mss.may80/ nhap.jun88/ nhap.oct88/ tm.apr88/ ...

tm.apr88/
__

 REF POINTS TARGET subgroup/

In this example, the groups are named mss.may80 , nhap.jun88 , etc. Note that each group is itself a directory. Each group
contains some files (REF , POINTS ,and TARGET), and a subdirectory (subgroup).

8.3.1. The REF File

The REF file contains the list of cell files associated with the group. The format is illustrated below:

tm.apr88.1 grass
tm.apr88.2 grass
tm.apr88.3 grass
tm.apr88.4 grass
tm.apr88.5 grass
tm.apr88.7 grass

Each line of this file contains the name and mapset of a cell file. In this case, there are six cell files in the group: tm.apr88.1
, tm.apr88.2 , tm.apr88.3 , tm.apr88.4 , tm.apr88.5 and tm.apr88.7 in mapset grass. (Presumably these are bands 1-5 and 7
from an April 88 Landsat Thematic Mapper image.)

8.3.2. The POINTS File
The POINTS file contains the image registration control points. This file is created and modified by the i.points program. Its
format is illustrated below:

image target status
#

east north east north (1=ok)
504.00 -2705.00 379145.30 4448504.56 1
458.00 -2713.00 378272.67 4448511.67 1
2285.80 -2296.00 415610.08 4450456.17 1
2397.00 -2564.00 417043.22 4444757.65 0
2158.00 -2944.00 411037.79 4438210.97 1
2148.00 -2913.00 410834.61 4438656.18 0
2288.80 -2336.20 415497.19 4449671.77 1

The lines which begin with # are comment lines. The first two columns of data (under image) are the column (i.e., east) and
row (i.e., north) of the registration control points as marked on the image. The next two columns (under target) are the east
and north of the marked points in the target database coordinate system (in this case, a UTM database). The last column
(under status) indicates whether or not the control point is well placed. (If it is ok, then it will be used as a valid registration
point. Otherwise, it is simply retained in the file, but not used.)

34

8.3.3. The TARGET File
The TARGET file contains the name of the target database; i.e., the GRASS database mapset into which rectified cell files
will be created. The TARGET file is written by i.target and has two lines:

spearfish
grass

The first line is the GRASS location (in this case spearfish), and the second is a mapset within the location (in this case
grass).

8.3.4. Subgroups

The subgroup directory under a group has the following structure:

subgroup/

123/ 234/ 1357/ ...

1357/

REF sig/

cluster.1 cluster.2

In this example, the subgroups are named 123 , 234 , 1357 , etc. Within each subgroup, there is a REF file and a sig directory.
The REF file would list a subset of the cell files from the group. In this example, it could look like:

tm.apr88.1 grass
tm.apr88.3 grass
tm.apr88.5 grass
tm.apr88.7 grass

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1988 TM scene. The files cluster.1 and
cluster.2 under the sig directory contain spectral signature information (i.e., statistics) for this combination of band files.
The files were generated by different runs of the clustering program i.cluster.

8.4. Imagery Programs
The following is a list of some of the imagery programs in GRASS, with a brief description of what they do. Refer to the
GRASS User’s Reference Manual for more details.

image extraction

i.tape.mss Landsat Multispectral Scanner data
i.tape.tm Landsat Thematic Mapper data
i.tape.other other formats, such as scanned aerial photography or SPOT satellite data

image rectification
i.points image registration (assign control points)
i.rectify image rectification
i.target establish target database for the group

35

image classification
i.cluster unsupervised clustering
i.maxlik maximum likelihood classifier

other
i.group group management

8.5. Programming Interface for Groups
The programming interface to the group data is described in 14 Imagery Library and the reader is referred to that chapter for
details.

36

Chapter 9

Region and Mask

GRASS users are provided with two mechanisms for specifying the area of the earth in which to view and analyze their data.
These are known in GRASS as the region and the mask. The user is allowed to set a region which defines a rectangular area
of coverage on the earth, and optionally further limit the coverage by specifying a “cookie cutter” mask. The region and mask
are stored in the database under the user’s current mapset. GRASS programs automatically retrieve only data that fall within
the region. Furthermore, if there is a mask, only data that fall within the mask are retained. Programs determine the region
and mask from the database rather than asking the user.

9.1. Region
The user’s current database region is set by the user using the GRASS g.region, or d.zoom commands. It is stored in the
WIND file in the mapset. This file not only specifies the geographic boundaries of the region rectangle, but also the region
resolution which implicitly grids the region into rectangular “cells” of equal dimension.

Users expect map layers to be resampled into the current region. This implies that raster maps must be extended with no data
for portions of the region which do not cover the map layer, and that the raster map data be resampled to the region resolution
if the raster map resolution is different. Users also expect new map layers to be created with exactly the same boundaries and
resolution as the current region.

The WIND file contains the following fields:

WIND

north: 4660000.00
south: 4570000.00
east : 770000.00
west : 710000.00
e-w resol: 50.00
n-s resol: 100.00
rows: 900
cols: 1200
proj: 1
zone: 18

north, south, east, west

The geographic boundaries of the region are given by the north, south, east, and west fields. Note: these values
describe the lines which bound the region at its edges. These lines do NOT pass through the center of the grid cells
which form the region edge, but rather along the edge of the region itself.

rows, cols

These values describe the number of rows and columns in the region.

e-w resol, n-s resol

The fields e-w resol and n-s resol (which stand for east-west resolution and north-south resolution respectively)
describe the size of each grid cell in the region in physical measurement units (e.g., meters in a UTM database). The
e-w resol is the length of a grid cell from east to west. The n-s resol is the length of a grid cell from north to south.
Note that since the e-w resol may differ from the n-s resol, region grid cells need not be square. proj, zone The
projection field specifies the type of cartographic projection: 0 is unreferenced x,y (imagery data), 1 is UTM, 2 is
State Plane, 3 is Latitude Longitude. Others may be added in the future. The zone field is the projection zone. In the
example above, the projection is UTM, the zone 18.

37

Note. The format for the region file “WIND” is very similar to the format for the raster header files. See 5.3 Raster Header
Format for details about raster header files.

9.2. Mask
In addition to the region, the user may set a mask using the r.mask command. The mask is stored in the user’s current mapset
as a raster file with the name MASK. The mask acts like an opaque filter when reading other raster files. No-data values in
the mask (i.e., category zero) will cause corresponding values in other raster files to be read as no data (irrespective of the
actual value in the raster file).

The following diagram gives a visual idea of how the mask works:

input MASK output
3 4 4 0 1 1 0 4 4
3 3 4 + 1 1 0 = 3 3 0
2 3 3 1 0 0 2 0 0

9.3. Variations
If a GRASS program does not obey either the region or the mask, the variation must be noted in the user documentation for
the program, and the reason for the variation given.

38

Chapter 10

Environment Variables

GRASS programs are written to be independent of which database the user is using, where the database resides on the disk,
or where the programs themselves reside. When programs need this information, they get some of it from UNIX environment
variables, and the rest from GRASS environment variables.

10.1. UNIX Environment
The GRASS start-up command grass4.2 sets the following UNIX environment variables:

GISBASE top level directory for the GRASS programs
GIS_LOCK process id of the start-up shell script
GISRC name of the GRASS environment file

GISBASE is the top level directory for the GRASS programs. For example, if GRASS were installed under /grass, then
GISBASE would be set to /grass. The command directory would be /grass/bin, the command support directory would be /
grass/etc, the source code directory would be /grass/src, the on-line manual would live in /grass/man, etc.

GISBASE, while set in the UNIX environment, is given special handling in GRASS code. This variable must be accessed
using the GIS Library routine G_gisbase.

GIS_LOCK is used for various locking mechanisms in GRASS. It is set to the process id of the start-up shell so that locking
mechanisms can detect orphaned locks (e.g., locks that were left behind during a system crash).

GIS_LOCK may be accessed using the UNIX getenv() routine.

GISRC is set to the name of the GRASS environment file where all other GRASS variables are stored. This file is .grassrc
in the user’s home directory.

10.2. GRASS Environment
All GRASS users will have a file in their home directory named .grassrc which is used to store the variables that comprise
the environment of all GRASS programs. This file will always include the following variables that define the database in
which the user is working:

GISDBASE toplevel database directory
LOCATION_NAME location directory
MAPSET mapset directory

The user sets these variables during GRASS start-up. While the value of GISDBASE will be relatively constant, the others
may change each time the user runs GRASS. GRASS programs access these variables using the G_gisdbase, G_location,
and G_mapset routines in the GIS Library. See 4.2 GISDBASE for details about GISDBASE, 4.3 Locations for details
about database locations, and 4.4 Mapsets for details about mapsets.

Other variables may appear in this file. Some of these are:

MONITOR currently selected graphics monitor
PAINTER currently selected paint output device
DIGITIZER currently selected digitizer

These variables are accessed and set from C programs using the general purpose routines G_getenv and G_setenv.. The
GRASS program g.gisenv provides a command level interface to these variables.

39

10.3. Difference Between GRASS and UNIX Environments
The GRASS environment is similar to the UNIX environment in that programs can access information stored in “environ-
ment” variables. However, since the GRASS environment variables are stored in a disk file, it offers two capabilities not
available with UNIX environment variables. First, variables may be set by one program for later use by other programs. For
example, the GRASS start-up sets these variables for use by all other GRASS application programs. Second, since the
variables remain in the file unless explicitly removed, they are available from session to session. Also, several GRASS
environment variables are used as defaults each time a GRASS session is initiated.

40

Chapter 11

Compiling and Installing GRASS Programs

GRASS programs are compiled and installed using the GRASS gmake4.2 front-end to the UNIX make command: gmake4.2
reads a file named Gmakefile to construct a make.rules file (see Multiple-Architecture Conventions for more information,)
and then runs make. The GRASS compilation process allows for multiple-architecture compilation from a single copy of the
source code (for instance, if the source code is RFS or NFS mounted to various machines with differing architectures.) This
chapter assumes that the programmer is familiar with make and its accompanying makefiles.

11.1. gmake4.2
The GRASS gmake4.2 utility allows make compilation rules to be developed without having to specify machine and instal-
lation dependent information. gmake4.2 combines predefined variables that specify the machine and installation dependent
information with the Gmakefile, to create a makefile. (The predefined variables and the construction of a Gmakefile are
described in 11.2 Gmakefile Variables.)

gmake4.2 is invoked as follows:

gmake4.2 [source directory] [target]

If run without arguments, gmake4.2 will run in the current directory, build a makefile from the Gmakefile found there, and
then run make. If run with a source directory argument, gmake4.2 will change into this directory and then proceed as above.
If run with a target argument as well, then make will be run on the specified target.

11.2. Gmakefile Variables
The predefined Gmakefile variables which the GRASS programmer must use when writing a Gmakefile specify libraries,
source and binary directories, compiler and loader flags, etc. The most commonly used variables will be defined here.
Examples of how to use them follow in 11.3 Constructing a Gmakefile. The full set of variables can be seen in Appendix A.
Annotated Gmakefile Predefined Variables. Variables marked with (-) are not commonly used.

GRASS Directories: The following variables tell gmake4.2 where source code and program directories are:

SRC (-) This is the directory where GRASS source code lives.

BIN This is the directory where user-accessible GRASS programs live.

ETC This is the directory where support files and programs live. These support files and programs are used by the
$(BIN) programs, and are not known to, or run by the user.

LIBDIR (-) This is the directory where most of the GRASS libraries are kept.

INCLUDE_DIR (-) This is where include and header files live. For example, “gis.h” can be found here. gmake4.2
automatically specifies this directory to the C compiler as a place to find include files.

GRASS Libraries. The following variables name the various GRASS libraries:

GISLIB This names the GIS Library, which is the principal GRASS library. See 12 GIS Library for details about
this library, and 12.21 Loading the GIS Library for a sample Gmakefile which loads this library.

VASKLIB This names the Vask Library, which does full screen user input.

VASK This specifies the Vask Library plus the UNIX curses and termcap libraries needed to use the Vask Library
routines. See 20 Vask Library for details about this library, and 20.4 Loading the Vask Library for a
sample Gmakefile which loads this library.

SEGMENTLIB This names the Segment Library, which manages large matrix data. See 19 Segment Library for
details about this library, and 20.4 Loading the Vask Library for a sample Gmakefile which loads this
library.

41

RASTERLIB This names the Raster Graphics Library, which communicates with GRASS graphics drivers. See 15
Raster Graphics Library for details about this library, and 15.9 Loading the Raster Graphics Library for
a sample Gmakefile which loads this library.

DISPLAYLIB This names the Display Graphics Library, which provides a higher level graphics interface to
$(RASTERLIB). See 16 Display Graphics Library for details about this library, and 16.11 Loading the
Display Graphics Library for a sample Gmakefile which loads this library.

UNIX Libraries: The following variables name some useful UNIX system libraries:

MATHLIB This names the math library. It should be used instead of the -lm loader option.

CURSES This names both the curses and termcap libraries. It should be used instead of the -lcurses and -ltermcap
loader options. Do not use $(CURSES) if you use $(VASK).

TERMLIB This names the termcap library. It should be used instead of the -ltermcap or -ltermlib loader options.
Do not use $(TERMLIB) if you use $(VASK) or $(CURSES).

Compiler and loader variables. The following variables are related to compiling and loading C programs:

CC This variable specifies what compiler/loader to use. This should always be referenced, as opposed to “cc”. See
11.3.1 Building programs from source (.c) files for the proper use of the CC variable.

AR This variable specifies the rule that must be used to build object libraries. See 11.3.3 Building object libraries
for details.

CFLAGS (-) This variable specifies all the C compiler options. It should never be necessary to use this variable -
gmake4.2 automatically supplies this variable to the C compiler.

EXTRA_CFLAGS This variable can be used to add additional options to $(CFLAGS). It has no predefined values.
It is usually used to specify additional -I include directories, or -D preprocessor defines.

GMAKE This is the full name of the gmake4.2 command. It can be used to drive compilation in subdirectories.

LDFLAGS This specifies the loader flags. The programmer must use this variable when loading GRASS programs
since there is no way to automatically supply these flags to the loader.

MAKEALL This defines a command which runs gmake4.2 in all subdirectories that have a Gmakefile in them.

11.3. Constructing a Gmakefile
A Gmakefile is constructed like a makefile. The complete syntax for a makefile is discussed in the UNIX documentation for
make and will not be repeated here. The essential idea is that a target (e.g. a GRASS program) is to be built from a list of
dependencies (e.g. object files, libraries, etc.). The relationship between the target, its dependencies, and the rules for
constructing the target is expressed according to the following syntax:

target : dependencies
actions
more actions

If the target does not exist, or if any of the dependencies have a newer date than the target (i.e., have changed), the actions will
be executed to build the target. The actions must be indented using a TAB. Make is picky about this. It does not like spaces
in place of the TAB.

11.3.1. Building programs from source (.c) files

To build a program from C source code files, it is only necessary to specify the compiled object (.o) files as dependencies for
the target program, and then specify an action to load the object files together to form the program. The make utility builds
.o files from .c files without being instructed to do so.

42

For example, the following Gmakefile builds the program xyz and puts it in the GRASS program directory.

OBJ = main.o sub1.o sub2.o sub3.o

$(BIN)/xyz: $(OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

The target xyz depends on the object files listed in the variable $(OBJ) and the $(GISLIB) library. The action runs the C
compiler to load xyz from the $(OBJ) files and $(GISLIB).

$@ is a make shorthand which stands for the target, in this case xyz. Its use should be encouraged, since the target name can
be changed without having to edit the action as well.

$(CC) is the C compiler. It is used as the interface to the loader. It should be specified as $(CC) instead of cc. Make defines
$(CC) as cc, but using $(CC) will allow other C-like compilers to be used instead.

$(BIN) is a gmake4.2 variable which names the UNIX directory where GRASS commands live. Specifying the target as
$(BIN)/xyz will cause gmake4.2 to build xyz directly into the $(BIN) directory.

$(LDFLAGS) specify loader flags which must be passed to the loader in this manner.

$(GISLIB) is the GIS Library. $(GISLIB) is specified on the action line so that it is included during the load step. It is also
specified in the dependency list so that changes in $(GISLIB) will also cause the program to be reloaded. Note that no rules
were given for building the .o files from their related .c files. In fact, the GRASS programmer should never giv e an explicit
rule for compiling .c files. It is sufficient to list all the .o files as dependencies of the target. The .c files will be automatically
compiled to build up-to-date .o files before the .o files are loaded to build the target program.

Also note that since $(GISLIB) is specified as a dependency it must also be specified as a target. Make must be told how to
build all dependencies as well as targets. In this case a dummy rule is given to satisfy make.

11.3.2. Include files

Often C code uses the # include directive to include header files in the source during compilation. Header files that are
included into C source code should be specified as dependencies as well. It is the .o files which depend on them:

OBJ = main.o sub1.o sub2.o
$(BIN)/xyz: $(OBJ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)
$(OBJ): myheader.h
$(GISLIB): # in case library changes

In this case, it is assumed that “myheader.h” lives in the current directory and is included in each source code file. If
“myheader.h” changes, then all .c files will be compiled even though they may not have changed. And then the target program
xyz will be reloaded.

If the header file “myheader.h” is in a different directory, then a different formulation can be used:

EXTRA_CFLAGS = -I..

OBJ = main.o sub1.o sub2.o

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case library changes

43

$(EXTRA_CFLAGS) will add the flag -I.. to the rules that compile .c files into .o files. This flag indicates that # include files
(i.e., “myheader.h”) can also be found in the parent (..) directory.

Note that this example does not specify that “myheader.h” is a dependency. If “myheader.h” were to change, this would not
cause recompilation here. The following rule could be added:

$(OBJ): ../myheader.h

11.3.3. Building object libraries

Sometimes it is desirable to build libraries of subroutines which can be used in many programs. gmake4.2 requires that these
libraries be built using the $(AR) rule as follows:

OBJ = sub1.o sub2.o sub3.o
lib.a: $(OBJ)
$(AR)

All the object files listed in $(OBJ) will be compiled and archived into the target library lib.a. The $(OBJ) variable must be
used. The $(AR) assumes that all object files are listed in $(OBJ).

Note that due to the way the $(AR) rule is designed, it is not possible to construct more than one library in a single source
code directory. Each library must have its own directory and related Gmakefile.

11.3.4. Building more than one target
Many target : dependency lines many be giv en. However, it is the first one in the Gmakefile which is built by gmake4.2. If
there are more targets to be built, the first target must explicitly or implicitly cause gmake4.2 to build the others.

The following builds two programs, abc and xyz directly into the $(BIN) directory:

ABC = abc.o sub1.o sub2.o
XYZ = xyz.o sub1.o sub3.o
all: $(BIN)/abc $(BIN)/xyz
$(BIN)/abc: $(ABC) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(ABC) $(GISLIB)
$(BIN)/xyz: $(XYZ) $(GISLIB)

$(CC) $(LDFLAGS) -o $@ $(XYZ) $(GISLIB)
$(GISLIB): # in case library changes

If it is desired to run the compilation in various subdirectories, a Gmakefile could be constructed which simply runs gmake4.2
in each subdirectory. For example:

all:

$(GMAKE) subdir.1
$(GMAKE) subdir.2
$(GMAKE) subdir.3

11.4. Compilation Results
This section describes the results of the GRASS compilation process for two separate subjects.

11.4.1. Multiple-Architecture Conventions

The following conventions allow for multiple architecture compilation on a machine that uses a common or networked
GRASS source code directory tree.

Object files and library archives are compiled into subdirectories that represent the architecture that they were compiled on.

44

These subdirectories are created in the $(SRC) directory as OBJ.arch and LIB.arch, where arch represents the architecture
of the compiling machine. Thus, for example, $(SRC)/OBJ.sun4 would contain the object files for Sun/4 and SPARC
architectures, and $(SRC)/LIB.386 would contain library archives for Sun/4 and SPARC architectures. Likewise, $(SRC)/
OBJ.386 would contain the object files for 386 architectures, and $(SRC)/LIB.386 would contain library archives for 386
architectures.

Note that ’arch’ is defined for a specific architecture during setup and compilation of GRASS, it is not limited to sun4 or any
specific string.

gmake4.2 produces a make.rules file in the $(SRC)/OBJ.arch directory instead of a makefile to allow for multiple-architec-
ture compilation.

11.4.2. Compiled Command Destinations

GRASS v4.2 merges the command-line and interactive versions of a function under the same name. This merging happens in
one of two methods.

1. The programmer writes a single program which uses the new parser capability (see 12.15 Command Line
Parsing.) The parser has both a command-line and a rudimentary prompt-based interactive interface.

2. The programmer writes writes a command-line version using the parser, but also provides an interactive version
as a separate module to override the parser’s interactive interface.

The second method requires that both the command-line program and the interactive program be somehow merged into one
program. This is accomplished by placing both programs in separate directories under $(GISBASE)/etc/bin and creating a
link (as described below) in $(BIN).

There are six directories where programs are placed. These, along with their respective Gmakefile variables, are:

etc/bin/main/inter $(BIN_MAIN_INTER)

Interactive versions of the primary GRASS commands.

etc/bin/main/cmd $(BIN_MAIN_CMD)

Command-line versions of the primary GRASS commands.

etc/bin/alpha/inter $(BIN_ALPHA_INTER)

Interactive versions of the alpha-version commands.

etc/bin/alpha/cmd $(BIN_ALPHA_CMD)

Command-line versions of the alpha-version commands.

etc/bin/contrib/inter $(BIN_CONTRIB_INTER)

Interactive versions of the contributed commands.

etc/bin/contrib/cmd $(BIN_CONTRIB_CMD)

Command-line versions of the contributed commands.

To merge the command-line and interactive versions of a command, the compilation process creates a link in $(BIN) to
$(GISBASE)/etc/front.end. This link has the same name as the command, and causes execution of the command to be passed
to a front-end. The front.end program will call the interactive version of the command if there were no command-line
arguments entered by the user. Otherwise, it will run the command-line version. If only one version of the specific command
exists (for example, there is only a command-line version available,) that one existing command is executed.

45

11.5. Notes

11.5.1. Bypassing the creation of .o files
If a program has only one .c source file, it is tempting to compile the program directly from the .c file without creating the .o
file. Please do not do this. There have been problems on some systems specifying both compiler and loader flags at the same
time. The .o files must be built first. Once all the .o files are built, they are loaded with any required libraries to build the
program.

11.5.2. Simultaneous compilation

The compilation process may be run on only one machine at a time. If you try to compile the same source directory on two
machines simultaneously, things will not turn out properly. This is your responsibility—gmake4.2 cannot detect simulta-
neous compilations.

46

Chapter 12

GIS Library

12.1. Introduction
The GIS Library is the primary programming library provided with the GRASS system. Programs must use this libary to
access the database. It contains the routines which locate, create, open, rename, and remove GRASS database files. It
contains the routines which read and write raster files. It contains routines which interface the user to the database, including
prompting the user, listing available files, validating user access, etc. It also has some general purpose routines (string
manipulation, user information, etc.) which are not tied directly to database processing.

It is assumed that the reader has read 4 Database Structure for a general description of GRASS databases, 5 Raster Maps for
details about raster map layers in GRASS, and 9 Region and Mask which discusses regions and masks. The routines in the
GIS Library are presented in functional groupings, rather than in alphabetical order. The order of presentation will, it is
hoped, provide a better understanding of how the library is to be used, as well as show the interrelationships among the
various routines. Note that a good way to understand how to use these routines is to look at the source code for GRASS
programs which use them. Most routines in this library require that the header file “gis.h” be included in any code using
these routines. Therefore, programmers should always include this file when writing code using routines from this library:

include “gis.h”

Note. All routines and global variables in this library, documented or undocumented, start with the prefix G_. To avoid name
conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix C. Index to GIS Library.

12.2. Library Initialization
It is mandatory that the system be initialized before any other library routines are called.

G_gisinit (program_name) initialize gis library

char *program_name;

This routine reads the user’s GRASS environment file into memory and makes sure that the user has selected a valid database
and mapset. It also initializes hidden variables used by other routines. If the user’s database information is invalid, an error
message is printed and the program exits. The program_name is stored for later recall by G_program_name. It is recom-
mended that argv[0] be used for the program_name:

main(argc, argv) char *argv[];

{
G_gisinit(argv[0]);

}

12.3. Diagnostic Messages
The following routines are used by other routines in the library to report warning and error messages. They may also be used
directly by GRASS programs.

G_fatal_error (message) print error message and exit

G_warning (message) print warning message and continue

char *message;

47

These routines report errors to the user. The normal mode is to write the message to the screen (on the standard error output)
and wait a few seconds. G_warning() will return and G_fatal_error() will exit.

If the standard error output is not a tty device, then the message is mailed to the user instead.

If the file GIS_ERROR_LOG exists (with write permission), in either the user’s home directory or in the $GISBASE
directory, the messages will also be logged to this file.

While most applications will find the normal error reporting quite adequate, there will be times when different handling is
needed. For example, graphics programs may want the messages displayed graphically instead of on the standard error
output. If the programmer wants to handle the error messages differently, the following routines can be used to modify the
error handling:

G_set_error_routine (handler) change error handling

int (*handler)();

This routine provides a different error handler for G_fatal_error() and G_warning(). The handler routine must be defined
as follows:

handler (message, fatal)
char *message;
int fatal;

where message is the message to be handled and fatal indicates the type of error : 1 (fatal error) or 0 (warning).

Note. The handler only provides a way to send the message somewhere other than to the error output. If the error is fatal, the
program will exit after the handler returns.

G_unset_error_routine () reset normal error handling

This routine resets the error handling for G_fatal_error and G_warning back to the default action.

G_sleep_on_error (flag) sleep on error

 int flag;

If flag is 0, then no pause will occur after printing an error or warning message. Otherwise the pause will occur.

G_suppress_warnings (flag) suppress warnings?

int flag;

If flag is 0, then G_warning will no longer print warning messages. If flag is 1, then G_warning() will print warning
messages.

Note. This routine has no effect on G_fatal_error.

12.4. Environment and Database Information
The following routines return information about the current database selected by the user. Some of this information is
retrieved from the user’s GRASS environment file. Some of it comes from files in the database itself. See 10 Environment
Variables for a discussion of the GRASS environment.

The following four routines can be used freely by the programmer :

char *

G_location () current location name

Returns the name of the current database location. This routine should be used by programs that need to display the
current location to the user. See 4.3 Locations for an explanation of locations.

48

char *

G_mapset () current mapset name

Returns the name of the current mapset in the current location. This routine is often used when accessing files in the
current mapset. See 4.4 Mapsets for an explanation of mapsets.

char *

G_myname () location title

Returns a one line title for the database location. This title is read from the file MYNAME in the PERMANENT
mapset. See also 4.6 Permanent Mapset for a discussion of the PERMANENT mapset.

char *

G_gisbase () top level program directory

Returns the full path name of the top level directory for GRASS programs. This directory will have subdirectories
which will contain programs and files required for the running of the system. Some of these directories are:

bin commands run by the user
etc programs and data files used by GRASS commands
txt help files
menu files used by the grass3 menu interface

The use of G_gisbase() to find these subdirectories enables GRASS programs to be written independently of where
the GRASS system is actually installed on the machine. For example, to run the program sroff in the GRASS etc
directory:

char command[200];

sprintf (command, “%s/etc/sroff”, G_gisbase());

system (command);

The following two routines return full path UNIX directory names. They should be used only in special cases. They are used
by other routines in the library to build full UNIX file names for database files. The programmer should not use the next
two routines to bypass the normal database access routines.

char *

G_gisdbase () top level database directory

Returns the full UNIX path name of the directory which holds the database locations. See 4.2 GISDBASE for a full
explanation of this directory.

char *

G_location_path () current location directory

Returns the full UNIX path name of the current database location. For example, if the user is working in location
spearfish in the /usr/grass3/data database directory, this routine will return a string which looks like /usr/grass3/
data/spearfish.

49

These next routines provide the low-level management of the information in the user’s GRASS environment file. They
should not be used in place of the higher level interface routines described above.

char *

G_getenv (name) query GRASS environment variable

char *

G_ _getenv (name) query GRASS environment variable

char *name;

These routines look up the variable name in the GRASS environment and return its value (which is a character string). If
name is not set, G_getenv() issues an error message and calls exit(). G_ _setenv() just returns the NULL pointer.

G_setenv (name, value) set GRASS environment variable

G_ _setenv (name, value) set GRASS environment variable

char *name;

char *value;

These routines set the the GRASS environment variable name to value. If value is NULL, the name is unset.

Both routines set the value in program memory, but only G_setenv() writes the new value to the user’s GRASS environment
file.

12.5. Fundamental Database Access Routines
The routines described in this section provide the low-level interface to the GRASS database. They search the database for
files, prompt the user for file names, open files for reading or writing, etc. The programmer should never bypass this level of
database interface. These routines must be used to access the GRASS database unless there are other higher level library
routines which perform the same function. For example, routines to process raster files (12.9 Raster File Processing),
vector files (12.11 Vector File Processing), or site files (12.12 Site List Processing), etc., should be used instead.

In the descriptions below, the term database element is used. Elements are subdirectories within a mapset and are associated
with a specific GRASS data type. For example, raster files live in the “cell” element. See 4.5.2 Elements for more details.

12.5.1. Prompting for Database Files
The following routines interactively prompt the user for a file name from a specific database element. (See 4.5.2 Elements
for an explanation of elements.) In each, the prompt string will be printed as the first line of the full prompt which asks the
user to enter a file name. If prompt is the empty string “” then an appropriate prompt will be substituted. The name that the
user enters is copied into the name buffer. The short (one or two word) label describing the element is used as part of a title
when listing the files in element.

The user is required to enter a valid file name, or else hit the RETURN key to cancel the request. If the user enters an invalid
response, a message is printed, and the user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the file lives or is to be created is returned. Both the name and the mapset are used in other
routines to refer to the file.

An example will be given here. The G_ask_old() routine used in the example is described a bit later. The user is asked to
enter a file from the “paint/labels” element :

char name[50];

char *mapset;

50

mapset = G_ask_old (“”, name, “paint/labels”, “labels”);

if (mapset = = NULL)

exit(0); /* user canceled the request */

The user will see the following:

file names to be quite long. It is recommended that name be declared char name[50].

Enter the name of an existing labels file
Enter ’list’ for a list of existing labels files
Hit RETURN to cancel request
>

char *

G_ask_old (prompt, name, element, label) prompt for existing database file

char *prompt;

char *name;

char *element;

char *label;

The user is asked to enter the name of an existing database file.

Note. This routine looks for the file in the current mapset as well as other mapsets. The mapsets that are searched are
determined from the user’s mapset search path. See 4.7.1 Mapset Search Path for some more details about the search path.

char *

G_ask_new (prompt, name, element, label) prompt for new database file

char *prompt;

char *name;

char *element;

char *label;

The user is asked to enter the name of a new file which does not exist in the current mapset.

Note. The file chosen by the user may exist in other mapsets. This routine does not look in other mapsets, since the assump-
tion is that name will be used to create a new file. New files are always created in the current mapset.

char *

G_ask_in_mapset (prompt, name, element, label) prompt for existing database file

char *prompt;

char *name;

char *element;

char *label;

The user is asked to enter the name of an file which exists in the current mapset.

Note. The file chosen by the user may or may not exist in other mapsets. This routine does not look in other mapsets, since
the assumption is that name will be used to modify a file. GRASS only permits users to modify files in the current mapset.

51

char *

G_ask_any (prompt, name, element, label, warn) prompt for any valid file name

char *prompt;

char *name;

char *element;

char *label;

int warn;

The user is asked to enter any leg al file name. If warn is 1 and the file chosen exists in the current mapset, then the user is
asked if it is ok to overwrite the file. If warn is 0, then any leg al name is accepted and no warning is issued to the user if the
file exists.

G_set_ask_return_msg (msg) set Hit RETURN msg

char *msg;

The “Hit RETURN to cancel request” part of the prompt in the prompting routines described above, is modified to “Hit
RETURN msg.”

char *

G_get_ask_return_msg () get Hit RETURN msg

The current msg (as set by G_set_ask_return_msg) is returned.

12.5.2. Fully Qualified File Names

All GRASS routines which access database files must be given both the file name and the mapset where the file resides.
Often the name and the mapset are 2 distinct character strings. However, there is a need for a single character string which
contains both the name and the mapset (e.g., for interactive interfacing to command-line programs). This form of the name is
known as the fully qualified file name and is built by the following routine:

char *

G_fully_qualified_name (name, mapset) fully qualified file name

char *name;

char *mapset;

Returns a fully qualified name for the file name in mapset. Currently this string is in the form name@mapset , but the
programmer should pretend not to know this and always call this routine to get the fully qualified name.

The following example shows how an interactive version of d.rast interfaces with the command-line version of d.rast :

#include “gis.h”
main(argc,argv) char *argv[];
{

char name[100], *mapset, *fqn;;
char command[1024];
G_gisinit(argv[0]);
mapset = G_ask_cell_old (“”, name, “”);
if (mapset = = NULL) exit(0);
fqn = G_fully_qualified_name (name, mapset);
sprintf (command, “d.rast map=’%s’”, fqn);
system(command);

}

52

12.5.3. Finding Files in the Database
Noninteractive programs cannot make use of the interactive prompting routines described above. For example, a command
line driven program may require a database file name as one of the command arguments. In this case, the programmer must
search the database to find the mapset where the file resides.

The following routines search the database for files:

char *

G_find_file (element, name, mapset) find a database file

char *element;

char *name;

char *mapset;

Look for the file name under the specified element in the database. The mapset parameter can either be the empty string “”,
which means search all the mapsets in the user’s current mapset search path, or it can be a specific mapset, which means. look
for the file only in this one mapset (for example, in the current mapset).

If found, the mapset where the file lives is returned. If not found, the NULL pointer is returned.
If the user specifies a fully qualified file name, (i.e, a name that also contains the mapset; see 12.5.2 Fully Qualified File
Names) then G_find_file() modifies name by eliminating the mapset from the name

For example, to find a “paint/labels” file anywhere in the database:

char name[50];
char *mapset;
if ((mapset = G_find_file(“paint/labels”,name,””)) = = NULL)

/* not found */

To check that the file exists in the current mapset :

char name[50];
if (G_find_file(“paint/labels”,name,G_mapset()) = = NULL)

/* not found */

12.5.4. Legal File Names

Not all names that a user may enter will be legal files for the GRASS databases. The routines which create new files require
that the new file have a leg al name. The routines which prompt the user for file names (e.g., G_ask_new) guarantee that the
name entered by the user will be legal. If the name is obtained from the command line, for example, the programmer must
check that the name is legal. The following routine checks for legal file names:

G_legal_filename (name) check for legal database file names

char *name;

Returns 1 if name is ok, -1 otherwise.

12.5.5. Opening an Existing Database File for Reading

The following routines open the file name in mapset from the specified database element for reading (but not for writing).
The file name and mapset can be obtained interactively using G_ask_old, and noninteractively using G_find_file.

G_open_old (element, name, mapset) open a database file for reading

53

char *element;

char *name;

char *mapset;

The database file name under the element in the specified mapset is opened for reading (but not for writing).

The UNIX open() routine is used to open the file. If the file does not exist, -1 is returned. Otherwise the file descriptor from
the open() is returned.

FILE *

G_fopen_old (element, name, mapset) open a database file for reading

char *element;

char *name;

char *mapset;

The database file name under the element in the specified mapset is opened for reading (but not for writing).

The UNIX fopen() routine, with “r” read mode, is used to open the file. If the file does not exist, the NULL pointer is
returned. Otherwise the file descriptor from the fopen() is returned.

12.5.6. Opening an Existing Database File for Update

The following routines open the file name in the current mapset from the specified database element for writing. The file
must exist. Its name can be obtained interactively using G_ask_in_mapset, and noninteractively using G_find_file.

G_open_update (element, name) open a database file for update
char *element;
char *name;

The database file name under the element in the current mapset is opened for reading and writing.

The UNIX open() routine is used to open the file. If the file does not exist, -1 is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the open() is returned.

G_fopen_append (element, name) open a database file for update

char *element;

char *name;

The database file name under the element in the current mapset is opened for appending (but not for reading).

The UNIX fopen() routine, with “a” append mode, is used to open the file. If the file does not exist, the NULL pointer is
returned. Otherwise the file is positioned at the end of the file and the file descriptor from the fopen() is returned.

12.5.7. Creating and Opening a New Database File

The following routines create the new file name in the current mapset under the specified database element and open it for
writing. The database element is created, if it does not already exist.

54

The file name should be obtained interactively using G_ask_new. If obtained noninteractively (e.g., from the command line),
G_legal_filename should be called first to make sure that name is a valid GRASS file name. Warning. It is not an error for
name to already exist. However, the file will be removed and recreated empty. The interactive routine G_ask_new guarantees
that name will not exist, but if name is obtained from the command line, name may exist. In this case G_find_file could be
used to see if name exists.

G_open_new (element, name) open a new database file
char *element;
char *name;

The database file name under the element in the current mapset is created and opened for writing (but not reading).

The UNIX open() routine is used to open the file. If the file does not exist, -1 is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the open() is returned.

FILE *

G_fopen_new (element, name) open a new database file

char *element;

char *name;

The database file name under the element in the current mapset is created and opened for writing (but not reading).

The UNIX fopen() routine, with “w” write mode, is used to open the file. If the file does not exist, the NULL pointer is
returned. Otherwise the file is positioned at the end of the file and the file descriptor from the fopen() is returned.

12.5.8. Database File Management
The following routines allow the renaming and removal of database files in the current mapset.

G_rename (element, old, new) rename a database file

char *element;

char *old; char *new;

The file or directory old under the database element directory in the current mapset is renamed to new.

Returns 1 if successful, 0 if old does not exist, and -1 if there was an error.

Bug. This routine does not check to see if the new name is a valid database file name.

G_remove (element, name) remove a database file

char *element;

char *name;

The file or directory name under the database element directory in the current mapset is removed.

Returns 1 if successful, 0 if name does not exist, and -1 if there was an error.

Note. If name is a directory, everything within the directory is removed as well.

Note. These functions only apply to the specific element and not to other “related” elements. For example, if element is
“cell”, then the specified raster file will be removed (or renamed), but the other support files, such as “cellhd” or “cats”, will
not. To remove these other files as well, specific calls must be made for each related element.

55

12.6. Memory Allocation
The following routines provide memory allocation capability. They are simply calls to the UNIX suite of memory allocation
routines malloc(), realloc() and calloc(), except that if there is not enough memory, they print a diagnostic message to that
effect and then call exit().

Note. Use the UNIX free() routine to release memory allocated by these routines.

char *

G_malloc (size) memory allocation

int size;

Allocates a block of memory at least size bytes which is aligned properly for all data types. A pointer to the aligned block is
returned.

char *

G_realloc (ptr, size) memory allocation

char *ptr;

int size;

Changes the size of a previously allocated block of memory at ptr and returns a pointer to the new block of memory. The size
may be larger or smaller than the original size. If the original block cannot be extended “in place”, then a new block is
allocated and the original block copied to the new block.

Note. If ptr is NULL, then this routine simply allocates a block of size bytes. This routine is different than malloc(), which
does not handle a NULL ptr.

char*
G_calloc (n, size) memory allocation

int n;

int size;

Allocates a properly aligned block of memory n*size bytes in length, initializes the allocated memory to zero, and returns a
pointer to the allocated block of memory.

Note. Allocating memory for reading and writing raster files is discussed in 12.9.5 Allocating Raster I/O Buffers.

12.7. The Region
The region concept is explained in 9.1 Region. It can be thought of as a two-dimensional matrix with known boundaries and
rectangular cells.

There are logically two different regions. The first is the database region that the user has set in the current mapset. The other
is the region that is active in the program. This active program region is what controls reading and writing of raster file data.

The routines described below use a GRASS data structure Cell_head to hold region information. This structure is defined in
the “gis.h” header file. It is discussed in detail under 12.20 GIS Library Data Structures.

12.7.1. The Database Region

Reading and writing the user’s database region are done by the following routines:

G_get_window (region) read the database region

struct Cell_head *region;

Reads the database region as stored in the WIND file in the user’s current mapset into region.

An error message is printed and exit() is called if there is a problem reading the region.

Note. GRASS applications that read or write raster files should not use this routine since its use implies that the active
program region will not be used. Programs that read or write raster file data (or vector data) can query the active program
region using G_window_rows and G_window_cols..

56

G_put_window (region) write the database region

struct Cell_head *region;

Writes the database region file (WIND) in the user’s current mapset from region. Returns 1 if the region is written ok.
Returns -1 if not (no diagnostic message is printed).

Warning. Since this routine actually changes the database region, it should only be called by programs which the user
knows will change the region. It is probably fair to say that under GRASS 3.0 only the g.region, and d.zoom programs
should call this routine.

There is another database region. This region is the default region for the location. The default region provides the user with
a “starting” region, i.e., a region to begin with and return to as a reference point. The GRASS programs g.region allow the
user to set their database region from the default region. (See 4.6 Permanent Mapset for a discussion of the default region.)
The following routine reads this region:

G_get_default_window (region) read the default region

struct Cell_head *region;

Reads the default region for the location into region.

An error message is printed and exit() is called if there is a problem reading the default region.

12.7.2. The Active Program Region
The active program region is the one that is used when reading and writing raster file data. This region determines the
resampling when reading raster data. It also determines the extent and resolution of new raster files.

Initially the active program region and the user’s database region are the same, but the programmer can make them different.
The following routines manage the active program region.

G_window_rows () number of rows in active region

G_window_cols () number of columns in active region

These routines return the number of rows and columns (respectively) in the active program region. Before raster files can be
read or written, it is necessary to known how many rows and columns are in the active region. For example:

int nrows, cols;

int row, col;

nrows = G_window_rows();

ncols = G_window_cols();

for (row = 0; row < nrows; row++)

{

read row ...
for (col = 0; col < ncols; col++)
{
process col ...

}
}

G_set_window (region) set the active region

struct Cell_head *region;

This routine sets the active region from region. Setting the active region does not change the WIND file in the database. It

57

simply changes the region for the duration of the program. A warning message is printed and -1 returned if region is not
valid. Otherwise 1 is returned.

Note. This routine overrides the region as set by the user. Its use should be very limited since it changes what the user
normally expects to happen. If this routine is not called, then the active region will be the same as what is in the user’s WIND
file.

Warning. Calling this routine with already opened raster files has some side effects. If there are raster files which are open
for reading, they will be read into the newly set region, not the region that was active when they were opened. However,
CELL buffers allocated for reading the raster files are not automatically reallocated. The program must reallocate them
explicitly. Also, this routine does not change the region for raster files which are open for writing. The region that was active
when the open occurred still applies to these files.

G_get_set_window (region) get the active region

struct Cell_head *region;

Gets the values of the currently active region into region. If G_set_window has been called, then the values set by that call
are retrieved. Otherwise the user’s database region is retrieved.

Note. For programs that read or write raster data, and really need the full region information, this routine is preferred over
G_get_window. However, since G_window_rows and G_window_cols return the number of rows and columns in the
active region, the programmer should consider whether or not the full region information is really needed before using this
routine.

char *

G_align_window (region, ref) align two regions

struct Cell_head *region, *ref;

Modifies the input region to align to the ref region. The resolutions in region are set to match those in ref and the region
edges (north, south, east, west) are modified to align with the grid of the ref region.

The region may be enlarged if necessary to achieve the alignment. The north is rounded northward, the south southward, the
east eastward and the west westward.

This routine returns NULL if ok, otherwise it returns an error message.

double

G_col_to_easting (col, region) column to easting

double col;

struct Cell_head *region;

Converts a column relative to a region to an easting;

Note. col is a double: col+0.5 will return the easting for the center of the column; col+0.0 will return the easting for the
western edge of the column; and col+1.0 will return the easting for the eastern edge of the column.

double
G_row_to_northing (row, region) row to northing

double row;

struct Cell_head *region;

58

Converts a row relative to a region to a northing;

Note. row is a double: row+0.5 will return the northing for the center of the row; row+0.0 will return the northing for the
northern edge of the row; and row+1.0 will return the northing for the southern edge of the row. double G_easting_to_col
(east, region) easting to column double east; struct Cell_head *region;

Converts an easting relative to a region to a column.

Note. The result is a double. Casting it to an integer will give the column number.

double

G_northing_to_row (north, region) northing to row

double row;

struct Cell_head *region;

Converts a north ing relative to a region to a row.

Note. the result is a double. Casting it to an integer will give the row number.

12.7.3. Projection Information

The following routines return information about the cartographic projection and zone. See 9.1 Region for more information
about these values.

G_projection () query cartographic projection

This routine returns a code indicating the projection for the active region. The current values are:

0 unreferenced x,y (imagery data)

1 UTM

2 State Plane
3 Latitude-Longitude
Others may be added in the future.

char *
G_database_projection_name (proj) query cartographic projection

int proj;

Returns a pointer to a string which is a printable name for projection code proj (as returned by G_projection). Returns
NULL if proj is not a valid projection.

char *

G_database_unit_name (plural) database units

int plural

Returns a string describing the database grid units. It returns a plural form (eg. feet) if plural is true. Otherwise it returns a
singular form (eg. foot).

59

double

G_database_units_to_meters_factor () conversion to meters

Returns a factor which converts the grid unit to meters (by multiplication). If the database is not metric (eg. imagery) then 0.0
is returned.

G_zone () query cartographic zone

This routine returns the zone for the active region. The meaning for the zone depends on the projection. For example zone 18
for projection type 1 would be UTM zone 18.

12.8. Latitude-Longitude Databases
GRASS supports databases in a longitude-latitude grid using a projection where the x coordinate is the longitude and the y
coordinate is the latitude. This projection is called the Equidistant Cylindrical Projection. ECP has the property that where
am I and row-column calculations are identical to those in planimetric grids (like UTM). This implies that normal GRASS
registration and overlay functions will work without any special considerations or modifications to existing code. However,
the projection is not planimetric. This means that distance and area calculations are no longed Euclidean.

Also, since the world is round, maps may not have edges in the east-west direction, especially for global databases. Maps
may have the same longitude at both the east and west edges of the display. This feature, called global wraparound, must be
accounted for by GRASS programs (particularly vector based functions, like plotting.) What follows is a description of the
GISLIB library routines that are available to support latitude-longitude databases.

12.8.1. Coordinates

Latitudes and longitudes are specified in degrees. Northern latitudes range from 0 to 90 degrees, and southern latitudes from
0 to -90. Longitudes have no limits since longitudes ±360 degrees are equivalent.

Coordinates are represented in ASCII using the format dd:mm:ssN or dd:mm:ssS for latitudes, ddd:mm:ssE or ddd.mm.ssW
for longitudes, and dd.mm.ss for grid resolution. For example, 80:30:24N represents a northern latitude of 80 degrees, 30
minutes, and 24 seconds. 120:15W represents a longitute

120 degrees and 15 minutes west of the prime meridian. 30:15 represents a resolution of 30 degrees and 15 minutes. These
next routines convert between ASCII representations and the machine representation for a coordinate. They work both with
latitude-longitude projections and planimetric projections.

Note. In each subroutine, the programmer must specify the projection number. If the projection number is PROJECTION_LL,
then latitude-longitude ASCII format is invoked. Otherwise, a standard floating-point to ASCII conversion is made.

G_format_easting (east, buf, projection) easting to ASCII
double east ;
char *buf ;
int projection ;

Converts the double representation of the east coordinate to its ASCII representation (into buf).

G_format_northing (north, buf, projection) northing to ASCII

double north ;

char *buf ;

int projection ;

Converts the double representation of the north coordinate to its ASCII representation (into buf).

G_format_resolution (resolution, buf, projection) resolution to ASCII

double resolution ;

60

char *buf ;

int projection ;

Converts the double representation of the resolution to its ASCII representation (into buf).

G_scan_easting (buf, easting, projection) ASCII easting to double

char *buf ;

double *easting ;

int projection ;

Converts the ASCII “easting” coordinate string in buf to its double representation (into easting).

G_scan_northing (buf, northing, projection) ASCII northing to double

char *buf ;

double *northing ;

int projection ;

Converts the ASCII “northing” coordinate string in buf to its double representation (into northing).

G_scan_resolution (buf, resolution, projection) ASCII resolution to double
char *buf ;
double *resolution ;
int projection ;

Converts the ASCII “resolution” string in buf to its double representation (into resolution).

The following are examples of how these routines are used.

double north ;

char buf[50] ;

G_scan_northing(buf, north, G_projection()); /* ASCII to double */

G_format_northing(north, buf, G_projection()); /* double to ASCII */

G_format_northing(north, buf, -1); /* double to ASCII */
/* This last example forces floating-point ASCII format */

12.8.2. Raster Area Calculations

The following routines perform area calculations for raster maps., They are based on the fact that while the latitude-longi-
tude grid is not planimetric, the size of the grid cell at a given latitude is constant. The first routines work in any projection.

G_begin_cell_area_calculations () begin cell area calculations

This routine must be called once before any call to G_area_of_cell_at_row. It can be used in either planimetric projections
or the latitude-longitude projection. It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric, and
0 of the projection doesn’t hav e a metric (e.g. imagery.) If the return value is 1 or 0, all the grid cells in the map have the same
area. Otherwise the area of a grid cell varies with the row.

double

G_area_of_cell_at_row (row) cell area in specified row

int row ;

61

This routine returns the area in square meters of a cell in the specified row. This value is constant for planimetric grids and
varies with the row if the projection is latitude-longitude.

G_begin_zone_area_on_ellipsoid (a, e2, s) begin area calculations for ellipsoid

double a, e2, s ;

Initializes raster area calculations for an ellipsoid, where a is the semi-major axis of the ellipse (in meters), e2 is the ellipsoid
eccentricity squared, and s is a scale factor to allow for calculations of part of the zone (s=1.0 is full zone, s=0.5 is half the
zone, and s=360/ew_res is for a single grid cell).

Note. e2 must be positive. A negative value makes no sense, and zero implies a sphere.

double

G_area_for_zone_on_ellipsoid (north, south) area between latitudes

double north, south ;

Returns the area between latitudes north and south scaled by the factor s passed to G_begin_zone_area_on_ellipsoid.

G_begin_zone_area_on_sphere (r, s) initialize calculations for sphere

double north, south ;

Initializes raster area calculations for a sphere. The radius of the sphere is r and s is a scale factor to allow for calculations of
a part of the zone (see G_begin_zone_area_on_ellipsoid).

double

G_area_for_zone_on_sphere (north, south) area between latitudes

double north, south ;

Returns the area between latitudes north and south scaled by the factor s passed to G_begin_zone_area_on_sphere.

12.8.3. Polygonal Area Calculations

These next routines provide area calculations for polygons. Some of the routines are specifically for latitude-longitude,
while others will function for all projections.

However, there is an issue for latitude-longitude that does not occur with planimetric grids. Vector/polygon data is described
as a series of x,y coordinates. The lines connecting the points are not stored but are inferred. This is a simple, straight-
forward process for planimetric grids, but it is not simple for latitude-longitude. What is the shape of the line that connects
two points on the surface of a globe?

One choice (among many) is the shortest path from x1,y1 to x2,y2, known as the geodesic. Another is a straight line on the
grid. The area routines described below assume the latter. Routines to work with the former have not yet been developed.

G_begin_polygon_area_calculations () begin polygon area calculations

This initializes the polygon area calculation routines. It is used both for planimetric and latitude-longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric, and 0 if the projection doesn’t hav e a
metric (e.g. imagery.)

62

double

G_area_of_polygon (x, y, n) area in square meters of polygon

double *x, *y ;

int n ;

Returns the area in square meters of the polygon described by the n pairs of x,y coordinate vertices. It is used both for
planimetric and latitude-longitude projections.

Note. If the database is planimetric with the non-meter grid, this routine performs the required unit conversion to produce
square meters. double G_planimetric_polygon_area (x, y, n) area in coordinate units double *x, *y ; int n ;

Returns the area in coordinate units of the polygon described by the n pairs of x,y coordinate vertices for planimetric grids.
If the units for x,y are meters, then the area is in square meters. If the units are feet, then the area is in square feet, and so on.

G_begin_ellipsoid_polygon_area (a, e2) begin area calculations

double a, e2 ;

This initializes the polygon area calculations for the ellipsoid with semi-major axis a (in meters) and ellipsoid eccentricity
squared e2.

double
G_ellipsoid_polygon_area (lon, lat, n) area of lat-long polygon

double *lon, *lat ;

int n ;

Returns the area in square meters of the polygon described by the n pairs of lat,long vertices for latitude-longitude grids.

Note. This routine assumes grid lines on the connecting the vertices (as opposed to geodesics.)

12.8.4. Distance Calculations
Tw o routines perform distance calculations for any projection.

G_begin_distance_calculations () begin distance calculations

Initializes the distance calculations. It is used both for the planimetric and latitude-longitude projections.

It returns 2 if the projection is latitude-longitude, 1 if the projection is planimetric, and 0 if the projection doesn’t hav e a
metric (e.g. imagery.) double G_distance (x1, y1, x2, y2) distance in meters double x1, y1, x2, y2 ;

This routine computes the distance, in meters, from x1,y1 to x2,y2. If the projection is latitude-longitude, this distance is
measured along the geodesic. Tw o routines perform geodesic distance calculations.

G_begin_geodesic_distance (a, e2) begin geodesic distance

double a, e2 ;

Initializes the distance calculations for the ellipsoid with semi-major axis a (in meters) and ellipsoid eccentricity squared e2.
It is used only for the latitude-longitude projection.

double
G_geodesic_distance (lon1, lat1, lon2, lat2) geodesic distance

double lon1, lat1, lon2, lat2 ;

Calculates the geodesic distance from lon1,lat1 to lon2,lat2 in meters.

The calculation of the geodesic distance is fairly costly. These next three routines provide a mechanism for calculating
distance with two fixed latitudes and varying longitude separation.

63

G_set_geodesic_distance_lat1 (lat1) set geodesic distance lat1

double lat1 ;
Set the first latitude.

G_set_geodesic_distance_lat2 (lat2) set geodesic distance lat2
double lat2 ;

Set the second latitude.

double
G_geodesic_distance_lon_to_lon (lon1, lon2) geodesic distance

double lon1, lon2 ;

Calculates the geodesic distance from lon1,lat1 to lon2,lat2 in meters, where lat1 was the latitude passed to
G_set_geodesic_distance_latl and lat2 was the latitude passed to G_set_geodesic_distance_lat2.

12.8.5. Global Wraparound

These next routines provide a mechanism for determining the relative position of a pair of longitudes. Since longitudes of
±360 are equivalent, but GRASS requires the east to be bigger than the west, some adjustment of coordinates is necessary.

double
G_adjust_easting (east, region) returns east larger than west

double east ;

struct Cell_head *region ;

If the region projection is PROJECTION_LL, then this routine returns an equivalent east that is larger, but no more than 360
degrees larger, than the coordinate for the western edge of the region. Otherwise no adjustment is made and the original east
is returned.

double

G_adjust_east_longitude (east, west) adjust east longitude

 double east, west ;

This routine returns an equivalent east that is larger, but no more than 360 larger than the west coordinate.

This routine should be used only with latitude-longitude coordinates.

G_shortest_way (east1, east2) shortest way between eastings

double *east1, *east2 ;

If the database projection is PROJECTION_LL, then east1,east2 are changed so that they are no more than 180 degrees
apart. Their true locations are not changed. If the database projection is not PROJECTION_LL, then east1,east2 are not
changed.

12.8.6. Miscellaneous

char *

G_ellipsoid_name (n) return ellopsoid name

int n ;

This routine returns a pointer to a string containg the name for the nth ellipsoid in the GRASS ellipsoid table; NULL when
n is too large. It can be used as follows:

64

int n ;

char *name ;

for (n=0 ; name=G_ellipsoid_name(n) ; n++)

printf(“%s\n”, name);

G_get_ellipsoid_by_name (name, a, e2) get ellipsoid by name

char *name
double *a, *e2 ;

This routine returns the semi-major axis a (in meters) and eccentricity squared e2 for the named ellipsoid. Returns 1 if name
is a known ellipsoid, 0 otherwise.

G_get_ellipsoid_parameters (a, e2) get ellipsoid parameters

double *a, *e2 ;

This routine returns the semi-major axis a (in meters) and the eccentricity squared e2 for the ellipsoid associated with the
database. If there is no ellipsoid explicitly associated with the database, it returns the values for the WGS 84 ellipsoid.

double

G_meridional_radius_of_curvature (lon, a, e2) meridional radius of curvature

double lon, a, e2 ;

Returns the meridional radius of curvature at a given longitude:

p = a(1 - e 2)

(1 - e 2 sin 2 lon)3/2

double
G_transverse_radius_of_curvature (lon, a, e2) transverse radius of curvature

double lon, a, e2 ;

Returns the transverse radius of curvature at a given longitude:

v = a .
(1 - e 2 sin 2 lon)1/2

double
G_radius_of_conformal_tangent_sphere (lon, a, e2) radius of conformal tangent sphere

double lon, a, e2 ;

Returns the radius of the conformal sphere tangent to ellipsoid at a given longitude:

r = a(1 - e 2) ½

(1 - e 2 sin 2 lon)

G_pole_in_polygon (x, y, n) pole in polygon
double *x, *y ;
int n ;

For latitude-longitude coordinates, this routine determines if the polygon defined by the n coordinate vertices x,y contains
one of the poles.

65

Returns -1 if it contains the south pole; 1 if it contains the north pole; 0 if it contains neither pole.

Note. Use this routine only if the projection is PROJECTION_LL.

12.9. Raster File Processing
Raster files are the heart and soul of GRASS. All analyses are performed with raster file data. Because of this, a suite of
routines which process raster file data has been provided. The processing of raster files consists of determining which raster
file or files are to be processed (either by prompting the user or as specified on the program command line), locating the
raster file in the database, opening the raster file, dynamically allocating i/o buffers, reading or writing the raster file, closing
the raster file, and creating support files for newly created raster files.

All raster file data is of type CELL , which is defined in “gis.h”.

12.9.1. Prompting for Raster Files
The following routines interactively prompt the user for a raster file name. In each, the prompt string will be printed as the
first line of the full prompt which asks the user to enter a raster file name. If prompt is the empty string “” then an appropri-
ate prompt will be substituted. The name that the user enters is copied into the name buffer. These routines have a built-in
’list’ capability which allows the user to get a list of existing raster files.

The user is required to enter a valid raster file name, or else hit the RETURN key to cancel the request. If the user enters an
invalid response, a message is printed, and the user is prompted again. If the user cancels the request, the NULL pointer is
returned. Otherwise the mapset where the raster file lives or is to be created is returned. Both the name and the mapset are
used in other routines to refer to the raster file.

char*
G_ask_cell_old (prompt, name) prompt for existing raster file

char *prompt;

char *name;

Asks the user to enter the name of an existing raster file in any mapset in the database.

char *

G_ask_cell_in_mapset (prompt, name) prompt for existing raster file

char *prompt;

char *name;

Asks the user to enter the name of an existing raster file in the current mapset.

char *

G_ask_cell_new (prompt, name) prompt for new raster file

char *prompt;

char *name;

Asks the user to enter a name for a raster file which does not exist in the current mapset.

Here is an example of how to use these routines. Note that the programmer must handle the NULL return properly:

char *mapset;

66

char name[50];

mapset = G_ask_cell_old(“Enter raster file to be processed”, name);

if (mapset = = NULL)

exit(0);

12.9.2. Finding Raster Files in the Database

Noninteractive programs cannot make use of the interactive prompting routines described above. For example, a command
line driven program may require a raster file name as one of the command arguments. GRASS allows the user to specify raster
file names (or any other database file) either as a simple unqualified name, such as “soils”, or as a fully qualified name, such
as “soils@mapset”, where mapset is the mapset where the raster file is to be found. Often only the unqualified raster file
name is provided on the command line.

The following routines search the database for raster files:

char*
G_find_cell (name, mapset) find a raster file

char *name;

char *mapset;

Look for the raster file name in the database. The mapset parameter can either be the empty string “”, which means search
all the mapsets in the user’s current mapset search path, or it can be a specific mapset name, which means look for the raster
file only in this one mapset (for example, in the current mapset). If found, the mapset where the raster file lives is returned.
If not found, the NULL pointer is returned.

If the user specifies a fully qualified raster file which exists, then G_find_cell() modifies name by removing the “@mapset”.

For example, to find a raster file anywhere in the database:

char name[50];
char *mapset;

if ((mapset = G_find_cell(name,””)) = = NULL)
/* not found */

To check that the raster file exists in the current mapset :

char name[50];

if (G_find_cell(name,G_mapset()) = = NULL)
/* not found */

12.9.3. Opening an Existing Raster File

The following routine opens the raster file name in mapset for reading.

The raster file name and mapset can be obtained interactively using G_ask_cell_old or G_ask_cell_in_mapset,, and
noninteractively using G_find_cell

G_open_cell_old (name, mapset) open an existing raster file
char *name;
char *mapset;

This routine opens the raster file name in mapset for reading. A nonnegative file descriptor is returned if the open is
successful. Otherwise a diagnostic message is printed and a negative value is returned. This routine does quite a bit of work.
Since GRASS users expect that all raster files will be resampled into the current region, the resampling index for the raster

67

file is prepared by this routine after the file is opened. The resampling is based on the active program region. Preparation
required for reading the various raster file formats is also done.

12.9.4. Creating and Opening New Raster Files

The following routines create the new raster file name in the current mapset and open it for writing. The raster file name
should be obtained interactively using G_ask_cell_new. If obtained noninteractively (e.g., from the command line),
G_legal_filename should be called first to make sure that name is a valid GRASS file name.

Note. It is not an error for name to already exist. New raster files are actually created as temporary files and moved into the
cell directory when closed. This allows an existing raster file to be read at the same time that it is being rewritten. The
interactive routine G_ask_cell_new guarantees that name will not exist, but if name is obtained from the command line,
name may exist. In this case G_find_cell could be used to see if name exists.

Warning. However, there is a subtle trap. The temporary file, which is created using G_tempfile, is named using the current
process id. If the new raster file is opened by a parent process which exits after creating a child process using fork(), the
raster file may never get created since the temporary file would be associated with the parent process, not the child. GRASS
management automatically removes temporary files associated with processes that are no longer running. If fork() must be
used, the safest course of action is to create the child first, then open the raster file. (See the discussion under G_tempfile for
more details.)

G_open_cell_new (name) open a new raster file (sequential)

char *name;

Creates and opens the raster file name for writing by G_put_map_row which writes the file row by row in sequential order.
The raster file data will be compressed as it is written.

A nonnegative file descriptor is returned if the open is successful. Otherwise a diagnostic message is printed and a negative
value is returned.

G_open_cell_new_random (name) open a new raster file (random)

char *name;

Creates and opens the raster file name for writing by G_put_map_row_random which allows writing the raster file in a
random fashion. The file will be created uncompressed.

A nonnegative file descriptor is returned if the open is successful. Otherwise a diagnostic message is printed and a negative
value is returned.

G_open_cell_new_uncompressed (name) open a new raster file (uncompressed)

char *name;

Creates and opens the raster file name for writing by G_put_map_row which writes the file row by row in sequential order.
The raster file will be in uncompressed format when closed.

A nonnegative file descriptor is returned if the open is successful. Otherwise a warning message is printed on stderr and a
negative value is returned.

General use of this routine is not recommended, because imagery files do not compress well and may actually be larger than
the original file. This routine is provided so the r.compress program can create uncompressed raster files.

12.9.5. Allocating Raster I/O Buffers

Since there is no predefined limit for the number of columns in the region, buffers which are used for reading and writing
raster data must be dynamically allocated.

68

CELL *

G_allocate_cell_buf () allocate a raster buffer

This routine allocates a buffer of type CELL just large enough to hold one row of raster data (based on the number of
columns in the active region).

CELL *cell;

cell = G_allocate_cell_buf();

If larger buffers are required, the routine G_malloc can be used.

If sufficient memory is not available, an error message is printed and exit() is called.

G_zero_cell_buf (buf) zero a raster buffer

CELL *buf;

This routines assigns each member of the raster buffer array buf to zero. It assumes that buf has been allocated using
G_allocate_cell_buf.

12.9.6. Reading Raster Files

Raster data can be thought of as a two-dimensional matrix. The routines described below read one full row of the matrix. It
should be understood, however, that the number of rows and columns in the matrix is determined by the region, not the raster
file itself. Raster data is always read resampled into the region. This allows the user to specify the coverage of the database
during analyses. It also allows databases to consist of raster files which do not cover exactly the same area, or do not have the
same grid cell resolution. When raster files are resampled into the region, they all “look” the same.

Note. The rows and columns are specified “C style”, i.e., starting with 0.

G_get_map_row (fd, cell, row) read a raster file

int fd;

CELL *cell;

int row;

This routine reads the specified row from the raster file open on file descriptor fd (as returned by G_open_cell_old) into the
cell buffer. The cell buffer must be dynamically allocated large enough to hold one full row of raster data. It can be allocated
using G_allocate_cell_buf.

This routine prints a diagnostic message and returns -1 if there is an error reading the raster file. Otherwise a nonnegative
value is returned.

G_get_map_row_nomask (fd, cell, row) read a raster file (without masking)

int fd;

CELL *cell;

int row;

This routine reads the specified row from the raster file open on file descriptor fd into the cell buffer like G_get_map_row(
) does. The difference is that masking is suppressed. If the user has a mask set, G_get_map_row() will apply the mask but
G_get_map_row_nomask() will ignore it.

This routine prints a diagnostic message and returns -1 if there is an error reading the raster file. Otherwise a nonnegative
value is returned.

69

Note. Ignoring the mask is not generally acceptable. Users expect the mask to be applied. However, in some cases ignoring
the mask is justified. For example, the GRASS programs r.describe, which reads the raster file directly to report all data
values in a raster file, and r.slope.aspect, which produces slope and aspect from elevation, ignore both the mask and the
region. However, the number of GRASS programs which do this should be minimal. See 9.2 Mask for more information
about the mask.

12.9.7. Writing Raster Files

The routines described here write raster file data.

G_put_map_row (fd, buf) write a raster file (sequential)
int fd;
CELL *buf;

This routine writes one row of raster data from buf to the raster file open on file descriptor fd. The raster file must have been
opened with G_open_cell_new.

The cell buf must have been allocated large enough for the region, perhaps using G_allocate_cell_buf.

If there is an error writing the raster file, a warning message is printed and -1 is returned. Otherwise 1 is returned.

Note. The rows are written in sequential order. The first call writes row 0, the second writes row 1, etc. The following
example assumes that the raster file name is to be created:

int fd, row, nrows, ncols;

CELL *buf;

fd = G_open_cell_new(name);

if (fd < 0) ERROR}
buf = G_allocate_cell_buf();
ncols = G_window_cols();
nrows = G_window_rows();
for (row = 0; row < nrows; row++)
{

/* prepare data for this row into buf */
/* write the data for the row */

G_put_map_row(fd, buf);

}

G_put_map_row_random (fd, buf, row, col, ncells) write a raster file (random)

int fd;

CELL *buf;

int row, col, ncells;

This routine allows random writes to the raster file open on file descriptor fd. The raster file must have been opened using
G_open_cell_new_random. The raster buffer buf contains ncells columns of data and is to be written into the raster file at
the specified row, starting at column col.

70

12.9.8. Closing Raster Files

All raster files are closed by one of the following routines, whether opened for reading or for writing.

G_close_cell (fd) close a raster file

int fd;

The raster file opened on file descriptor fd is closed. Memory allocated for raster processing is freed. If open for writing,
skeletal support files for the new raster file are created as well.

Note. If a program wants to explicitly write support files (e.g., a specific color table) for a raster file it creates, it must do so
after the raster file is closed. Otherwise the close will overwrite the support files. See 12.10 Raster Map Layer Support
Routines for routines which write raster support files.

G_unopen_cell (fd) unopen a raster file

int fd;

The raster file opened on file descriptor fd is closed. Memory allocated for raster processing is freed. If open for writing, the
raster file is not created and the temporary file created when the raster file was opened is removed (see 12.9.4 Creating and
Opening New Raster Files).

This routine is useful when errors are detected and it is desired to not create the new raster file. While it is true that the raster
file will not be created if the program exits without closing the file, the temporary file will not be removed at program exit.
GRASS database management will eventually remove the temporary file, but the file can be quite large and will take up disk
space until GRASS does remove it. Use this routine as a courtesy to the user.

12.10. Raster Map Layer Support Routines
GRASS map layers have a number of support files associated with them. These files are discussed in detail in 5 Raster Maps.
The support files are the raster header, the category file, the color table, the history file, and the range file. Each support file
has its own data structure and associated routines.

12.10.1. Raster Header File

The raster header file contains information describing the geographic extent of the map layer, the grid cell resolution, and the
format used to store the data in the raster file. The format of this file is described in 5.3 Raster Header Format. The routines
described below use the Cell_head structure which is shown in detail in 12.20 GIS Library Data Structures.

G_get_cellhd (name, mapset, cellhd) read the raster header

char *name;

char *mapset;

struct Cell_Head *cellhd;

The raster header for the raster file name in the specified mapset is read into the cellhd structure.

If there is an error reading the raster header file, a diagnostic message is printed and -1 is returned. Otherwise, 0 is returned.

Note. If the raster file is a reclass file, the raster header for the referenced raster file is read instead. See 5.3.2 Reclass Format
for information about reclass files, and G_is_reclass for distinguishing reclass files from regular raster files.

71

Note. It is not necessary to get the raster header for a map layer in order to read the raster file data. The routines which read
raster file data automatically retrieve the raster header information and use it for resampling the raster file data into the active
region. If it is necessary to read the raster file directly without resampling into the active region, then the raster header can
be used to set the active region using G_set_window.

char *

G_adjust_Cell_head (cellhd, rflag, cflag) adjust cell header

struct Cell_head *cellhd;

int rflag, cflag;

This function fills in missing parts of the input cell header (or region). It also makes projection-specific adjustments. The
cellhd structure must have its north , south , east , west , and proj fields set. If rflag is true, then the north-south resolution
is computed from the number of rows in the cellhd structure. Otherwise the number of rows is computed from the north-
south resolution in the structure, similarly for cflag and the number of columns and the east-west resolution. This routine
returns NULL if execution occurs without error, otherwise it returns an error message.

G_put_cellhd (name, cellhd) write the raster header
char *name;
struct Cell_head *cellhd;

This routine writes the information from the cellhd structure to the raster header file for the map layer name in the current
mapset.

If there was an error creating the raster header, -1 is returned. No diagnostic is printed. Otherwise, 1 is returned to indicate
success.

Note. Programmers should have no reason to use this routine. It is used by G_close_cell to giv e new raster files correct
header files, and by the r.support program to give users a means of creating or modifying raster headers. G_is_reclass
(name, mapset, r_name, r_mapset) reclass file? char *name; char *mapset; char *r_name; char *r_mapset;

This function determines if the raster file name in mapset is a reclass file. If it is, then the name and mapset of the referenced
raster file are copied into the r_name and r_mapset buffers.

Returns 1 if name is a reclass file, 0 if it is not, and -1 if there was a problem reading the raster header for name.

12.10.2. Raster Category File
GRASS map layers have category labels associated with them. The category file is structured so that each category in the
raster file can have a one-line description. The format of this file is described in 5.4 Raster Category File Format.

The routines described below manage the category file. Some of them use the Categories structure which is described in
12.20 GIS Library Data Structures.

12.10.2.1. Reading and Writing the Raster Category File

The following routines read or write the category file itself:

G_read_cats (name, mapset, cats) read raster category file
char *name;
char *mapset;
struct Categories *cats;

The category file for raster file name in mapset is read into the cats structure. If there is an error reading the category file,
a diagnostic message is printed and -1 is returned. Otherwise, 0 is returned.

G_write_cats (name, cats) write raster category file

72

char *name;

struct Categories *cats;

Writes the category file for the raster file name in the current mapset from the cats structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed). char * G_get_cell_title (name, mapset) get
raster map title char *name; char *mapset;

If only the map layer title is needed, it is not necessary to read the entire category file into memory. This routine gets the title
for raster file name in mapset directly from the category file, and returns a pointer to the title. A legal pointer is always
returned. If the map layer does not have a title, then a pointer to the empty string “” is returned. char * G_put_cell_title
(name, title) change raster map title char *name; char *title;

If it is only desired to change the title for a map layer, it is not necessary to read the entire category file into memory, change
the title, and rewrite the category file. This routine changes the title for the raster file name in the current mapset directly in
the category file. It returns a pointer to the title.

12.10.2.2. Querying and Changing the Categories Structure
The following routines query or modify the information contained in the category structure:

char *

G_get_cat (n, cats) get a category label

CELL n;

struct Categories *cats;

This routine looks up category n in the cats structure and returns a pointer to a string which is the label for the category. A
legal pointer is always returned. If the category does not exist in cats, then a pointer to the empty string “” is returned.

Warning. The pointer that is returned points to a hidden static buffer. Successive calls to G_get_cat() overwrite this buffer.
char * G_get_cats_title (cats) get title from category structure struct Categories *cats;

Map layers store a one-line title in the category structure as well. This routine returns a pointer to the title contained in the
cats structure. A legal pointer is always returned. If the map layer does not have a title, then a pointer to the empty string “”
is returned.

G_init_cats (n, title, cats) initialize category structure

CELL n; char *title;

struct Categories *cats;

To construct a new category file, the structure must first be initialized. This routine initializes the cats structure, and copies
the title into the structure. The number of categories is set initially to n.

For example:

struct Categories cats;
G_init_cats ((CELL)0, “”, &cats);

G_set_cat (n, label, cats) set a category label
CELL n; char *label;
struct Categories *cats;

The label is copied into the cats structure for category n.

73

G_set_cats_title (title, cats) set title in category structure

char *title;

struct Categories *cats;

The title is copied into the cats structure.

G_free_cats (cats) free category structure memory

struct Categories *cats;

Frees memory allocated by G_read_cats, G_init_cats and G_set_cat.

12.10.3. Raster Color Table
GRASS map layers have colors associated with them. The color tables are structured so that each category in the raster file
has its own color. The format of this file is described in 5.5 Raster Color Table Format.

The routines that manipulate the raster color file use the Colors structure which is described in detail in 12.20 GIS Library
Data Structures.

12.10.3.1. Reading and Writing the Raster Color File

The following routines read, create, modify, and write color tables.

G_read_colors (name, mapset, colors) read map layer color table

char *name;

char *mapset;

struct Colors *colors;

The color table for the raster file name in the specified mapset is read into the colors structure.

If the data layer has no color table, a default color table is generated and 0 is returned. If there is an error reading the color
table, a diagnostic message is printed and -1 is returned. If the color table is read ok, 1 is returned.

G_write_colors (name, mapset, colors) write map layer color table
char *name;
char *mapset;
struct Colors *colors;

The color table is written for the raster file name in the specified mapset from the colors structure.

If there is an error, -1 is returned. No diagnostic is printed. Otherwise, 1 is returned.

The colors structure must be created properly, i.e., G_init_colors to initialize the structure and G_add_color_rule to set the
category colors.

Note. The calling sequence for this function deserves special attention. The mapset parameter seems to imply that it is
possible to overwrite the color table for a raster file which is in another mapset. However, this is not what actually happens.
It is very useful for users to create their own color tables for raster files in other mapsets, but without overwriting other users’
color tables for the same raster file. If mapset is the current mapset, then the color file for name will be overwritten by the
new color table. But if mapset is not the current mapset, then the color table is actually written in the current mapset under
the colr2 element as: colr2/mapset/name.

74

12.10.3.2. Lookup Up Raster Colors

These routines translates raster values to their respective colors.

G_lookup_colors (raster, red, green, blue, set, n, colors) lookup an array of colors

CELL *raster;

unsigned char *red;

unsigned char *green;

unsigned char *blue;

unsigned char *set;

int n;

struct Colors *colors;

Extracts colors for an array of raster values. The colors for the n values in the raster array are stored in the red, green, and
blue arrays. The values in the set array will indicate if the corresponding raster value has a color or not (1 means it does, 0
means it does not). The programmer must allocate the red, green, blue, and set arrays to be at least dimension n.

Note. The red, green, and blue intensities will be in the range 0-255.

G_get_color (cat, red, green, blue, colors) get a category color

CELL cat;

int *red;

int *green;

int *blue;

struct Colors *colors;

The red, green, and blue intensities for the color associated with category cat are extracted from the colors structure. The
intensities will be in the range 0-255.

12.10.3.3. Creating and/or Modifying the Color Table

These routines allow the creation of customized color tables as well as the modification of existing tables.

G_init_colors (colors) initialize color structure

struct Colors *colors;

The colors structure is initialized for subsequent calls to G_add_color_rule and G_set_color.

G_add_color_rule (cat1, r1, g1, b1, cat2, r2, g2, b2, colors) set colors

CELL cat1, cat2;

int r1,g1,b1;

int r2,g2,b2;

struct Colors *colors;

This is the heart and soul of the new color logic. It adds a color rule to the colors structure. The colors defined by the red,
green, and blue values r1,g1,b1 and r2,g2,b2 are assigned to cat1 and cat2 respectively. Colors for data values between cat1
and cat2 are not stored in the structure but are interpolated when queried by G_lookup_colors and G_get_color. The color

75

components r1,g1,b1 and r2,g2,b2 must be in the range 0-255.

For example, to create a linear grey scale for the range 200-1000:

struct Colors colr;
G_init_colors (&colr);
G_add_color_rule ((CELL)200, 0,0,0, (CELL)1000, 255,255,255);

The programmer is encouraged to review 5.5 Raster Color Table Format how this routine fits into the 4.2 raster color logic.

Note. The colors structure must have been initialized by G_init_colors. See 12.10.3.4 Predefined Color Tables for routines
to build some predefined color tables.

G_set_color (cat, red, green, blue, colors) set a category color

CELL cat;

int red;

int green;

int blue;

struct Colors *colors;

The red, green, and blue intensities for the color associated with category cat are set in the colors structure. The intensities
must be in the range 0-255. Values below zero are set as zero, values above 255 are set as 255.

Use of this routine is discouraged because it defeats the new color logic. It is provided only for backward compatibility.
Overuse can create large color tables. G_add_color_rule should be used whenever possible.

Note. The colors structure must have been initialized by G_init_color.

G_get_color_range (min, max, colors) get color range

CELL *min, *max;

struct Colors *colors;

Gets the minimum and maximum raster values that have colors associated with them.

G_free_colors (colors) free color structure memory

struct Colors *colors;

The dynamically allocated memory associated with the colors structure is freed.

Note. This routine may be used after G_read_colors as well as after G_init_colors.

12.10.3.4. Predefined Color Tables

The following routines generate entire color tables. The tables are loaded into a colors structure based on a range of category
values from min to max. The range of values for a raster map can be obtained, for example, using G_read_range. Note. The
color tables are generated without information about any particular raster file.

These color tables may be created for a raster file, but they may also be generated for loading graphics colors.

These routines return -1 if min is greater than max, 1 otherwise.

76

G_make_aspect_colors (colors, min, max) make aspect colors

struct Colors *colors;

CELL min, max;

Generates a color table for aspect data.

G_make_ramp_colors (colors, min, max) make color ramp

struct Colors *colors;

CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each increasing from none to full intensity. This
table is good for continuous data, such as elevation.

G_make_wave_colors (colors, min, max) make color wave

struct Colors *colors;

CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each increasing from none to full intensity and
back down to none. This table is good for continuous data like elevation.

G_make_grey_scale_colors (colors, min, max) make linear grey scale

struct Colors *colors;

CELL min, max;

Generates a grey scale color table. Each color is a level of grey, increasing from black to white.

G_make_rainbow_colors (colors, min, max) make rainbow colors

struct Colors *colors;

CELL min, max;

Generates a “shifted” rainbow color table - yellow to green to cyan to blue to magenta to red. The color table is based on
rainbow colors. (Normal rainbow colors are red, orange, yellow, green, blue, indigo, and violet.) This table is good for
continuous data, such as elevation.

G_make_random_colors (colors, min, max) make random colors
struct Colors *colors;
CELL min, max;

Generates random colors. Good as a first pass at a color table for nominal data.

G_make_ryg_colors (colors, min, max) make red,yellow,green colors

struct Colors *colors;

77

CELL min, max;

Generates a color table that goes from red to yellow to green.

G_make_gyr_colors (colors, min, max) make green,yellow,red colors

struct Colors *colors;

CELL min, max;

Generates a color table that goes from green to yellow to red.

G_make_histogram_eq_colors (colors, s) make histogram-stretched grey colors

struct Colors *colors;

struct Cell_stats *s;

Generates a histogram contrast-stretched grey scale color table that goes from the ,histogram information in the Cell_stats
structure s. (See 12.10.6 Raster Histograms.)

12.10.4. Raster History File

The history file contains documentary information about the raster file: who created it, when it was created, what was the
original data source, what information is contained in the raster file, etc. This file is discussed in 5.6 Raster History File.

The following routines manage this file. They use the History structure which is described in 12.20 GIS Library Data
Structures.

Note. This structure has existed relatively unmodified since the inception of GRASS. It is in need of overhaul. Programmers
should be aware that future versions of GRASS may no longer support either the routines or the data structure which support
the history file.

G_read_history (name, mapset, history) read raster history file
char *name;
char *mapset;
struct History *history;

This routine reads the history file for the raster file name in mapset into the history structure.

A diagnostic message is printed and -1 is returned if there is an error reading the history file. Otherwise, 0 is returned.

G_write_history (name, history) write raster history file

char *name;

struct History *history;

This routine writes the history file for the raster file name in the current mapset from the history structure.

A diagnostic message is printed and -1 is returned if there is an error writing the history file. Otherwise, 0 is returned.

Note. The history structure should first be initialized using G_short_history.

G_short_history (name, type, history) initialize history structure

char *name;

char *type;

struct History *history;

78

This routine initializes the history structure, recording the date, user, program name and the raster file name structure. The
type is an anachronism from earlier versions of GRASS and should be specified as “raster”.

Note. This routine only initializes the data structure. It does not write the history file.

12.10.5. Raster Range File
The following routines manage the raster range file. This file contains the minimum and maximum values found in the raster
file. The format of this file is described in 5.7 Raster Range File.

The routines below use the Range data structure which is described in 12.20 GIS Library Data Structures.

G_read_range (name, mapset, range) read raster range

char *name;

char *mapset;

struct Range *range;

This routine reads the range information for the raster file name in mapset into the range structure.

A diagnostic message is printed and -1 is returned if there is an error reading the range file. Otherwise, 0 is returned.

G_write_range (name, range) write raster range file

char *name;

struct Range *range;

This routine writes the range information for the raster file name in the current mapset from the range structure.

A diagnostic message is printed and -1 is returned if there is an error writing the range file. Otherwise, 0 is returned.

The range structure must be initialized and updated using the following routines:

G_init_range (range) initialize range structure

struct Range *range;

Initializes the range structure for updates by G_update_range and G_row_update_range.

G_update_range (cat, range) update range structure

CELL cat;

struct Range *range;

Compares the cat value with the minimum and maximum values in the range structure, modifying the range if cat extends
the range.

G_row_update_range (cell, n, range) update range structure

CELL *cell;

int n;

struct Range *range;

This routine updates the range data just like G_update_range, but for n values from the cell array.

The range structure is queried using the following routine:

G_get_range_min_max (range, min, max) get range min and max

struct Range *range;

79

CELL *min, *max;

The mininum and maximum CELL values are extracted from the range structure.

12.10.6. Raster Histograms

The following routines provide a relatively efficient mechanism for computing and querying a histogram of raster data. They
use the Cell_stats structure to hold the histogram information. The histogram is a count associated with each unique raster
value representing the number of times each value was inserted into the structure.

These next two routines are used to manage the Cell_stats structure:

G_init_cell_stats (s) initialize cell stats

struct Cell_stats *s;

This routine, which must be called first, initializes the Cell_stats structure s.

G_free_cell_stats (s) free cell stats

struct Cell_stats *s;

The memory associated with structure s is freed. This routine may be called any time after calling G_init_cell_stats.

This next routine stores values in the histogram:

G_update_cell_stats (data, n, s) add data to cell stats
CELL *data;
int n;
struct Cell_stats *s;

The n CELL values in the data array are inserted (and counted) in the Cell_stats structure s.

Once all values are stored, the structure may be queried either randomly (ie. search for a specific raster value) or sequentially
(retrieve all raster values, in ascending order, and their related count):

G_find_cell_stat (cat, count, s) random query of cell stats

CELL cat;

long *count;

struct Cell_stats *s;

This routine allows a random query of the Cell_stats structure s. The count associated with the raster value cat is set. The
routine returns 1 if cat was found in the structure, 0 otherwise.

Sequential retrieval is accomplished using these next 2 routines:

G_rewind_cell_stats (s) reset/rewind cell stats

struct Cell_stats *s;

The structure s is rewound (i.e., positioned at the first raster category) so that sorted sequential retrieval can begin.

G_next_cell_stat (cat, count, s) retrieve sorted cell stats

CELL *cat;

long *count;

struct Cell_stats *s;

Retrieves the next cat,count combination from the structure s. Returns 0 if there are no more items, non-zero if there are
more.

80

For example:

struct Cell_stats s;
CELL cat;
long count;
.
. /* updating s occurs here */

.
G_rewind_cell_stats(&s);
while (G_next_cell_stat(&cat,&count,&s)

printf(“%ld %ld\n”, (long) cat, count);

12.11. Vector File Processing
The GIS Library contains some functions related to vector file processing. These include prompting the user for vector files,
locating vector files in the database, opening vector files, and a few others.

Note. Most vector file processing, however, is handled by routines in the Vector Library, which is described in 13 Vector
Library.

12.11.1. Prompting for Vector Files

The following routines interactively prompt the user for a vector file name. In each, the prompt string will be printed as the
first line of the full prompt which asks the user to enter a vector file name. If prompt is the empty string “” then an
appropriate prompt will be substituted. The name that the user enters is copied into the name buffer. These routines have a
built-in ’list’ capability which allows the user to get a list of existing vector files.

The user is required to enter a valid vector file name, or else hit the RETURN key to cancel the request. If the user enters an
invalid response, a message is printed, and the user is prompted again. If the user cancels the request, the NULL pointer is
returned. Otherwise the mapset where the vector file lives or is to be created is returned. Both the name and the mapset are
used in other routines to refer to the vector file.

char*
G_ask_vector_old (prompt, name) prompt for an existing vector file

char *name;

char *mapset;

Asks the user to enter the name of an existing vector file in any mapset in the database.

char *

G_ask_vector_in_mapset (prompt, name) prompt for an existing vector file

char *name;

char *mapset;

Asks the user to enter the name of an existing vector file in the current mapset.

char *

G_ask_vector_new (prompt, name) prompt for a new vector file

char *name;

char *mapset;

Asks the user to enter a name for a vector file which does not exist in the current mapset.

Here is an example of how to use these routines. Note that the programmer must handle the NULL return properly:

81

char *mapset;

char name[50];

mapset = G_ask_vector_old(“Enter vector file to be processed”, name);

if (mapset = = NULL)

exit(0);

12.11.2. Finding Vector Files in the Database
Noninteractive programs cannot make use of the interactive prompting routines described above. For example, a command
line driven program may require a vector file name as one of the command arguments. GRASS allows the user to specify
vector file names (or any other database file) either as a simple unqualified name, such as “roads”, or as a fully qualified
name, such as “roads in mapset”, where mapset is the mapset where the vector file is to be found. Often only the unqualified
vector file name is provided on the command line.

The following routines search the database for vector files:

G_find_vector (name, mapset) find a vector file
G_find_vector2 (name, mapset) find a vector file

char *name;
char *mapset;

Look for the vector file name in the database. The mapset parameter can either be the empty string “”, which means search
all the mapsets in the user’s current mapset search path,or it can be a specific mapset name, which means look for the vector
file only in this one mapset (for example, in the current mapset). If found, the mapset where the vector file lives is returned.
If not found, the NULL pointer is returned.

The difference between these two routines is that if the user specifies a fully qualified vector file which exists, then
G_find_vector2() modifies name by removing the “in mapset” while G_find_vector() does not. Normally, the GRASS
programmer need not worry about qualified vs. unqualified names since all library routines handle both forms. However, if
the programmer wants the name to be returned unqualified (for displaying the name to the user, or storing it in a data file,
etc.), then G_find_vector2() should be used.

For example, to find a vector file anywhere in the database:

char name[50];
char *mapset;
if ((mapset = G_find_vector(name,” “)) = = NULL)
/* not found */

To check that the vector file exists in the current mapset :

char name[50];
if (G_find_vector(name,G_mapset()) = = NULL)
/* not found */

12.11.3. Opening an Existing Vector File

The following routine opens the vector file name in mapset for reading.

The vector file name and mapset can be obtained interactively using G_ask_vector_old or G_ask_vector_in_mapset, and
noninteractively using G_find_vector or G_find_vector2.

FILE *

G_fopen_vector_old (name, mapset) open an existing vector file

char *name;

char *mapset;

82

This routine opens the vector file name in mapset for reading. A file descriptor is returned if the open is successful.
Otherwise the NULL pointer is returned (no diagnostic message is printed).

The file descriptor can then be used with routines in the Dig Library to read the vector file. (See 13 Vector Library.)

Note. This routine does not call any routines in the Dig Library ; No initialization of the vector file is done by this routine,
directly or indirectly.

12.11.4. Creating and Opening New Vector Files

The following routine creates the new vector file name in the current mapset and opens it for writing. The vector file name
should be obtained interactively using G_ask_vector_new. If obtained noninteractively (e.g., from the command line),
G_legal_filename should be called first to make sure that name is a valid GRASS file name.

Warning. If name already exists, it will be erased and re-created empty. The interactive routine G_ask_vector_new guaran-
tees that name will not exist, but if name is obtained from the command line, name may exist. In this case G_find_vector
could be used to see if name exists.

FILE*

G_fopen_vector_new (name) open a new vector file

char *name;

Creates and opens the vector file name for writing.

A file descriptor is returned if the open is successful. Otherwise the NULL pointer is returned (no diagnostic message is
printed).

The file descriptor can then be used with routines in the Dig Library to write the vector file. (See 13 Vector Library.)

Note. This routine does not call any routines in the Dig Library ; No initialization of the vector file is done by this routine,
directly or indirectly. Also, only the vector file itself (i.e., the dig file), is created. None of the other vector support files are
created, removed, or modified in any way.

12.11.5. Reading and Writing Vector Files
Reading and writing vector files is handled by routines in the Dig Library. See 13 Vector Library for details.

12.11.6. Vector Category File

GRASS vector files have category labels associated with them. The category file is structured so that each category in the
vector file can have a one-line description.

The routines described below read and write the vector category file. They use the Categories structure which is described
in 12.20 GIS Library Data Structures.

Note. The vector category file has exactly the same structure as the raster category file. In fact, it exists so that the program
v.to.rast can convert a vector file to a raster file that has an up-to-date category file.

The routines described in 12.10.2.2 Querying and Changing the Categories Structure which modify the Categories struc-
ture can therefore be used to set and change vector categories as well.

G_read_vector_cats (name, mapset, cats) read vector category file

char *name;

char *mapset;

struct Categories *cats;

The category file for vector file name in mapset is read into the cats structure. If there is an error reading the category file,
a diagnostic message is printed and -1 is returned. Otherwise, 0 is returned.

83

G_write_vector_cats (name, cats) write vector category file

char *name;

struct Categories *cats;

Writes the category file for the vector file name in the current mapset from the cats structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

12.12. Site List Processing
GRASS has a point database capability called s.menu, which manages a database of point or site information. The s.menu
program provides the majority of the analytical capabilities within GRASS for site data. The routines described here provide
programmers with mechanisms for reading existing site list files and for creating new ones. The reader should also see 7
Point Data: Site List Files for more details about the site list files.

12.12.1. Prompting for Site List Files

The following routines interactively prompt the user for a site list file name. In each, the prompt string will be printed as the
first line of the full prompt which asks the user to enter a site list file name. If prompt is the empty string “” then an
appropriate prompt will be substituted. The name that the user enters is copied into the name buffer. These routines have a
built-in “list” capability which allows the user to get a list of existing site list files.

The user is required to enter a valid site list file name, or else hit the RETURN key to cancel the request. If the user enters an
invalid response, a message is printed, and the user is prompted again. If the user cancels the request, the NULL pointer is
returned. Otherwise the mapset where the site list file lives or is to be created is returned. Both the name and the mapset are
used in other routines to refer to the site list file.

char *

G_ask_sites_old (prompt, name) prompt for existing site list file

char *prompt;

char *name;

Asks the user to enter the name of an existing site list file in any mapset in the database.

char *

G_ask_sites_in_mapset (prompt, name) prompt for existing site list file

char *prompt;

char *name;

Asks the user to enter the name of an existing site list file in the current mapset.

char *

G_ask_sites_new (prompt, name) prompt for new site list file

char *prompt;

char *name;

Asks the user to enter a name for a site list file which does not exist in the current mapset.

Here is an example of how to use these routines. Note that the programmer must handle the NULL return properly:

char *mapset;

84

char name[50];

mapset = G_ask_sites_old(“Enter site list file to be processed”, name);

if (mapset = = NULL)

exit(0);

12.12.2. Opening Site List Files

The following routines open site list files:

FILE*
G_fopen_sites_new (name) open a new site list file

char *name;

Creates an empty site list file name in the current mapset and opens it for writing.

Returns an open file descriptor if successful. Otherwise, returns NULL.

FILE *

G_fopen_sites_old (name, mapset) open an existing site list file

char *name;

char *mapset;

Opens the site list file name in mapset for reading.

Returns an open file descriptor if successful. Otherwise, returns NULL.

12.12.3. Reading and Writing Site List Files

G_get_site (fd, east, north, desc) read site list file

FILE *fd;

double *east, *north;

char **desc;

This routine sets east and north for the next “point” from the site list file open on file descriptor fd (as returned by
G_fopen_sites_old), and desc is set to point to the description of the site.

Returns: 1 if a site was found; -1 if there were no more sites.

For example:

double east, north;
char *desc;
FILE *fd;
fd = G_fopen_site_old (name, mapset);
while (G_get_site (fd, &east, &north, &desc) > 0)

printf (“%lf %lf %s\n”, east, north, desc);

Note: desc points to static memory, so each call overrides the description from the previous call.

G_put_site (fd, east, north, desc) write site list file
FILE *fd;
double east, north;
char *desc;

85

Writes the east and north coordinates and site description desc to the site file opened on file descriptor fd (as returned by
G_fopen_sites_new).

12.13. General Plotting Routines
The following routines form the foundation of a general purpose line and polygon plotting capability.

G_bresenham_line (x1, y1, x2, y2, point) Bresenham line algorithm

int x1, y1 ;

int x2, y2 ;

int (*point)() ;

Draws a line from x1,y1 to x2,y2 using Bresenham’s algorithm. A routine to plot points must be provided, as is defined as:

point(x, y) plot a point at x,y

This routine does not require a previous call to G_setup_plot to function correctly, and is independent of all following
routines.

G_setup_plot (t, b, l, r, Move, Cont) initialize plotting routines

double t, b, l, r ;

int (*Move)();

int (*Cont)();

Initializes the plotting capability. This routine must be called once before calling the G_plot_*() routines described below.

The parameters t, b, l, r are the top, bottom, left, and right of the output x,y coordinate space. They are not integers, but
doubles to allow for subpixel registration of the input and output coordinate spaces. The input coordinate space is assumed
to be the current GRASS region, and the routines supports both planimetric and latitude- longitude coordinate systems.

Move and Cont are subroutines that will draw lines in x,y space. They will be called as follows:

Move(x, y) move to x,y (no draw)
Cont(x, y) draw from previous position

to x,y. Cont() is responsible
for clipping

G_plot_line (east1, north1, east2, north2) plot line between latlon coordinates

double east1, north1, east2, north2 ;

A line from east1,north1 to east2,north2 is plotted in output x,y coordinates (e.g. pixels for graphics.) This routine
handles global wrap-around for latitude-longitude databases.

See G_setup_plot for the required coordinate initialization procedure.

G_plot_polygon (east, north, n) plot filled polygon with n vertices

double *east, *north ;

int n ;

The polygon, described by the n vertices east,north, is plotted in the output x,y space as a filled polygon.

See G_setup_plot for the required coordinate initialization procedure.

86

G_plot_where_en (x, y, east, north) x,y to east,north

int x, y ;

double *east, *north ;

The pixel coordinates x,y are converted to map coordinates east,north.

See G_setup_plot for the required coordinate initialization procedure.

G_plot_where_xy (east, north, x, y) east,north to x,y

double east, north ;

int *x, *y ;

The map coordinates east,north are converted to pixel coordinates x,y.

See G_setup_plot for the required coordinate initialization procedure.

G_plot_fx (f, east1, east2) plot f(east1) to f(east2)
double (*f)() ;

double east, east2 ;

The function f(east) is plotted from east1 to east2. The function f(east) must return the map northing coordinate associated
with east.

See G_setup_plot for the required coordinate initialization procedure.

12.14. Temporary Files
Often it is necessary for programs to use temporary files to store information that is only useful during the program run. After
the program finishes, the information in the temporary file is no longer needed and the file is removed. Commonly it is
required that temporary file names be unique from invocation to invocation of the program. It would not be good for a fixed
name like “/tmp/mytempfile” to be used. If the program were run by two users at the same time, they would use the same
temporary file. The following routine generates temporary file names which are unique within the program and across all
GRASS programs.

char *

G_tempfile () returns a temporary file name

This routine returns a pointer to a string containing a unique file name that can be used as a temporary file within the
program. Successive calls to G_tempfile() will generate new names.

Only the file name is generated. The file itself is not created. To create the file, the program must use standard UNIX
functions which create and open files, e.g., creat() or fopen().

The programmer should take reasonable care to remove (unlink) the file before the program exits. However, GRASS database
management will eventually remove all temporary files created by G_tempfile() that have been left behind by the programs
which created them.

Note. The temporary files are created in the GRASS database rather than under /tmp. This is done for two reasons. The first
is to increase the likelihood that enough disk is available for large temporary files since /tmp may be a very small file system.
The second is so that abandoned temporary files can be automatically removed (but see the warning below).

Warning. The temporary files are named, in part, using the process id of the program. GRASS database management will
remove these files only if the program which created them is no longer running. However, this feature has a subtle trap.
Programs which create child processes (using the UNIX fork() routine) should let the child call G_tempfile(). If the parent
does it and then exits, the child may find that GRASS has removed the temporary file since the process which created it is no
longer running.

87

12.15. Command Line Parsing
The following routines provide a standard mechanism for command line parsing. Use of the provided set of routines will
standardize GRASS commands that expect command line arguments, creating a family of GRASS programs that is easy for
users to learn. As soon as a GRASS user familiarizes himself with the general form of command line input as defined by the
parser, it will greatly simplify the necessity of remembering or at least guessing the required command line arguments for any
GRASS command. It is strongly recommended that GRASS programmers use this set of routines for all command line
parsing. With their use, the programmer is freed from the burden of generating user interface code for every command. The
parser will limit the programmer to a pre-defined look and feel, but limiting the interface is well worth the shortened user
learning curve.

12.15.1. Description

The GRASS parser is a collection of five subroutines which use two structures that are defined in the GRASS “gis.h” header
file. These structures allow the programmer to define the options and flags that make up the valid command line input of a
GRASS command.

The parser routines behave in one of three ways:

(1) If no command line arguments are entered by the user, the parser searches for a completely interactive version of the
command. If the interactive version is found, control is passed over to this version. If not, the parser will prompt the
user for all programmer-defined options and flags. This prompting conforms to the same standard for every GRASS
command that uses the parser routines.

(2) If command line arguments are entered but they are a subset of the options and flags that the programmer has defined as
required arguments, three things happen. The parser will pass an error message to the user indicating which re-
quired options and/or flags were missing from the command line, the parser will then display a complete usage
message for that command, and finally the parser cancels execution of the command.

(3) If all necessary options and flags are entered on the command line by the user, the parser executes the command with the
given options and flags.

12.15.2. Structures
The parser routines described below use two structures as defined in the GRASS “gis.h” header file.

This is a basic list of members of the Option and Flag structures. A comprehensive description of all elements of these two
structures and their possible values can be found in 12.15.5 Full Structure Members Description..

12.15.2.1. Option structure

These are the basic members of the Option structure.

struct Option *opt; /* to declare a command line option */

Structure Member Description of Member
opt->key Option name that user will use
opt->description Option description that is shown to the user

opt->type Variable type of the user’s answer to the option

opt->required Is this option required on the command line? (Boolean)

12.15.2.2. Flag structure
These are the basic members of the Flag structure.

struct Flag *flag; /* to declare a command line flag */

Structure Member Description of Member
flag->key Single letter used for flag name
flag->description Flag description that is shown to the user

88

12.15.3. Parser Routines
Associated with the parser are five routines that are automatically included in the GRASS Gmakefile process. The Gmakefile
process is documented in 11 Compiling and Installing GRASS Programs.

struct Option *

G_define_option () returns Option structure

Allocates memory for the Option structure and returns a pointer to this memory (of type struct Option *).

struct Flag *

G_define_flag () return Flag structure

Allocates memory for the Flag structure and returns a pointer to this memory (of type struct Flag *).

G_parser (argc, argv) parse command line

int argc;

char *argv[];

The command line parameters argv and the number of parameters argc from the main() routine are passed directly to
G_parser (). G_parser () accepts the command line input entered by the user, and parses this input according to the input
options and/or flags that were defined by the programmer.

G_parser () returns 0 if successful. If not successful, a usage statement is displayed that describes the expected and/or
required options and flags and a non-zero value is returned.

G_usage () command line help/usage message

Calls to G_usage () allow the programmer to print the usage message at any time. This will explain the allowed and required
command line input to the user. This description is given according to the programmer’s definitions for options and flags.
This function becomes useful when the user enters options and/or flags on the command line that are syntactically valid to
the parser, but functionally invalid for the command (e.g. an invalid file name.)

For example, the parser logic doesn’t directly support grouping options. If two options be specified together or not at all, the
parser must be told that these options are not required and the programmer must check that if one is specified the other must
be as well. If this additional check fails, then G_parser will succeed, but the programmer can then call G_usage () to print
the standard usage message and print additional information about how the two options work together.

G_disable_interactive () turns off interactive capability

When a user calls a command with no arguments on the command line, the parser will enter its own standardized interactive
session in which all flags and options are presented to the user for input. A call to G_disable_interactive() disables the
parser’s interactive promprting.

12.15.4. Parser Programming Examples

The use of the parser in the programming process is demonstrated here. Both a basic step by step example and full code
example are presented.

89

12.15.4.1. Step by Step Use of the Parser
These are the four basic steps to follow to implement the use of the GRASS parser in a GRASS command:

(1) Allocate memory for Flags and Options:

Flags and Options are pointers to structures allocated through the parser routines G_define_option and G_define_flag as
defined in 12.15.3 Parser Routines.

#include “gis.h” ; /* The standard GRASS include file */

struct Option *opt ; /* Establish an Option pointer for each option */

struct Flag *flag ; /* Establish a Flag pointer for each option */

opt = G_define_option() ; /* Request a pointer to memory for each option */

flag = G_define_flag() ; /* Request a pointer to memory for each flag */

(2) Define members of Flag and Option structures:

The programmer should define the characteristics of each option and flag desired as outlined by the following example:

opt->key = “option”; /* The name of this option is “option”. */

opt->description = “Option test”; /* The option description is “Option test” */

opt->type = TYPE_STRING; /* The data type of the answer to the option */

opt->required = YES; /* This option *is* required from the user */

flag->key = ’t’; /* Single letter name for flag */

flag->description = “Flag test”; /* The flag description is “Flag test” */

Note.There are more options defined later in 12.15.5.1 Complete Structure Members Table.

(3) Call the parser :

main(argc,argv) char *argv[]; /* command line args passed into main() */

G_parser(argc,argv); /* Returns 0 if successful, non-zero otherwise */

(4) Extracting information from the parser structures:

printf(“For the option \”%s\” you chose: <%s>\n”, opt->description, opt->answer);

printf(“The flag \”-%s\” is %s set.\n”, flag->key, flag->answer ? “” : “not”);

(5) Running the example program

Once such a program has been compiled (for example to the default executable file a.out , execution will result in the
following user interface scenarios. Lines that begin with # imply user entered commands on the command line.

a.out help

This is a standard user call for basic help information on the program. The command line options (in this case, “help”) are
sent to the parser via G_parser. The parser recognizes the “help” command line option and returns a list of options and/or
flags that are applicable for the specific command. Note how the programmer provided option and flag information is
captured in the output.

a.out [-t] option=name

Flags:

-tFlag test

90

Parameters:

option Option test

Now the following command is executed:

a.out -t

This command line does not contain the required option. Note that the output provides this information along with the
standard usage message (as already shown above.)

Required parameter <option> not set (Option test).

Usage:

a.out[-t] option=name
Flags:
-t Flag test
Parameters:

option Option test

The following commands are correct and equivalent. The parser provides no error messages and the program executes nor-
mally:

a.out option=Hello -t
a.out -t option=Hello
For the option “Option test” you chose: Hello
The flag “-t” is set.

If this specific command has no fully interactive version (a user interface that does not use the parser), the parser will prompt
for all programmer-defined options and/or flags.

User input is in italics, default answers are displayed in square brackets [].

a.out
OPTION: Option test
key: option
required: YES
enter option > Hello
You hav e chosen:

option=Hello
Is this correct? (y/n) [y] y
FLAG: Set the following flag?
Flag test? (y/n) [n] n
You chose: <Hello>
The flag is not set

12.15.4.2. Full Program Example

The following code demonstrates some of the basic capabilities of the parser. To compile this code, create this Gmakefile and
run the gmake command (see 11 Compiling and Installing GRASS Programs).

sample: sample.o
$(CC) $(LDFLAGS) -o $@ sample.o $(GISLIB)

The sample.c code follows. You might experiment with this code to familiarize yourself with the parser.
Note. This example includes some of the advanced structure members described in 12.15.5.1 Complete Structure Members
Table.

#include “gis.h”

main(argc , argv)
int argc ;

91

char *argv ;
{
struct Option *opt ;
struct Option *coor ;
struct Flag *flag ;
double X , Y ;
int n ;
opt =G_define_option() ;
opt->key =”debug” ;
opt->description = “Debug level” ;
opt->type =TYPE_STRING ;
opt->required =NO ;
opt->answer =”0” ;
coor =G_define_option() ;
coor->key =”coordinate” ;
coor->key_desc =”x,y” ;
coor->description = “One or more coordinates” ;
coor->type =TYPE_STRING ;
coor->required =YES ;
coor->multiple =YES ;

/* Note that coor->answer is not given a default value. */

flag =G_define_flag() ;
flag->key =’v’ ;
flag->description = “Verbose execution” ;

/* Note that flag->answer is not given a default value. */

if (G_parser(argc , argv))
exit(-1);

printf(“For the option \”%s\” you chose: <%s>\n”, opt->description, opt->answer);

printf(“The flag \”-%s\” is: %s set\n”, flag->key, flag->answer ? “” : “not”);

printf(“You specified the following coordinates:\n”);

for (n=0 ; coor->answers[n] != NULL ; n+=2)

{
G_scan_easting (coor->answers[n] , &X , G_projection());
G_scan_northing (coor->answers[n+1] , &Y , G_projection());
printf(“%.31f,%.21f\n”, X , Y);

}
}

12.15.5. Full Structure Members Description
There are many members to the Option and Flag structures. The following tables and descriptions summarize all defined
members of both the Option and Flag structures.

An in-depth summary of the more complex structure members is presented in 12.15.5.2 Description of Complex Structure
Members.

92

12.15.5.1. Complete Structure Members Table

struct Flag

structure member C type required default description and example

key char YES none Key char used on command line

flag->key = ’f’ ;

description char * YES none String describing flag meaning

flag->description = “run in fast mode” ;

answer char NO NULL Default and parser-returned flag states.

struct Option

structure member C type required default description and example

key char * YES none Key word used on command line.

 opt->key = “map” ;

type int YES none Option type:

TYPE_STRING

TYPE_INTEGER

TYPE_DOUBLE

 opt->type = TYPE_STRING ;

description char * YES none String describing option

opt->description = “Map name” ;

answer char * NO NULL Default and parser-returned answer to an option.

opt->answer = “defaultmap” ;

key_desc char * NO NULL Single word describing the key. Commas in this string denote

to the parser that several comma-separated arguments are expected

from the user as one answer. For example, if a pair of coordinates

is desired, this element might be defined as follows.

opt->key_desc = “x,y” ;

multiple int NO NO Indicates whether the user can provide multiple answers or not.

 YES and NO are defined in “gis.h” and should be used (NO is the

default.) Multiple is used in conjunction with the answers struc

ture member below.

opt->multiple = NO ;

answers NO NULL Multiple parser-returned answers to an option. N/A

required int NO NO Indicates whether user MUST provide the option on the command

line. YES and NO are defined in “gis.h” and should be used (NO

is the default.)

opt->required = YES ;

93

options char * NO NULL Approved values or range of values.

opt->options = “red,blue,white” ;

For integers and doubles, the following format is available:

opt->options = “0-1000” ;

gisprompt char * NO NULL Interactive prompt guidance. There are three comma separated parts

to this argument which guide the use of the standard GRASS file

name prompting routines.

opt->gisprompt = “old,cell,raster” ;

checker char *() NO NULL Routine to check the answer to an option m

opt->checker = my_routine() ;

12.15.5.2. Description of Complex Structure Members
What follows are explanations of possibly confusing structure members. It is intended to clarify and supplement the struc-
tures table above.

12.15.5.2.1. Answer member of the Flag and Option structures.

The answer structure member serves two functions for GRASS commands that use the parser.

(1) To set the default answer to an option:

If a default state is desired for a programmer-defined option, the programmer may define the Option structure
member “answer” before calling G_parser in his program. After the G_parser call, the answer member will hold
this preset default value if the user did not enter an option that has the default answer member value.

(2) To obtain the command-line answer to an option or flag: After a call to G_parser, the answer member will
contain one of two values:

(a) If the user provided an option, and answered this option on the command line, the default value of the answer
member (as described above) is replaced by the user’s input.

(b) If the user provided an option, but did not answer this option on the command line, the default is not used. The
user may use the default answer to an option by withholding mention of the option on the command line. But
if the user enters an option without an answer, the default answer member value will be replaced and set to a
NULL value by G_parser.

As an example, please review the use of answer members in the structures implemented in 12.15.4.2 Full Program Example.

12.15.5.2.2. Multiple and Answers Members

The functionality of the answers structure member is reliant on the programmer’s definition of the multiple structure mem-
ber. If the multiple member is set to NO, the answer member is used to obtain the answer to an option as described above.

If the multiple structure member is set to YES, the programmer has told G_parser to capture multiple answers. Multiple
answers are separated by commas on the command line after an option.

Note. G_parser does not recognize any character other than a comma to delimit multiple answers.

After the programmer has set up an option to receive multiple answers, these the answers are stored in the answers member
of the Option structure. The answers member is an array that contains each individual user-entered answer. The elements of
this array are the type specified by the programmer using the type member. The answers array contains however many
comma-delimited answers the user entered, followed (terminated) by a NULL array element.

94

For example, here is a sample definition of an Option using multiple and answers structure members:

opt->key =”option” ;

opt->description = “option example” ;

opt->type = TYPE_INTEGER ;

opt->required = NO ;

opt->multiple = YES ;

The above definition would ask the user for multiple integer answers to the option. If in response to a routine that contained
the above code, the user entered “option=1,3,8,15” on the command line, the answers array would contain the following
values:

answers[0] = = 1
answers[1] = = 3
answers[2] = = 8
answers[3] = = 15
answers[4] = = NULL

12.15.5.2.3. key_desc Member

The key_desc structure member is used to define the format of a single command line answer to an option. A programmer
may wish to ask for one answer to an option, but this answer may not be a single argument of a type set by the type structure
member. If the programmer wants the user to enter a coordinate, for example, the programmer might define an Option as
follows:

opt->key =”coordinate” ;

opt->description = “Specified Coordinate” ;

opt->type = TYPE_INTEGER ;

opt->required = NO ;

opt->key_desc = “x,y”

opt->multiple = NO ;

The answer to this option would not be stored in the answer member, but in the answers member. If the user entered “coor-
dinate=112,225” on the command line in response to a routine that contains the above option definition, the answers array
would have the following values after the call to G_parser:

answers[0] = = 112
answers[1] = = 225
answers[2] = = NULL

Note that “coordinate=112” would not be valid, as it does not contain both components of an answer as defined by the
key_desc structure member.

If the multiple structure member were set to YES instead of NO in the example above, the answers are stored sequentially in
the answers member. For example, if the user wanted to enter the coordinates (112,225), (142,155), and (43,201), his
response on the command line would be “coordinate=112,225,142,155,43,201”. Note that G_parser recognizes only a
comma for both the key_desc member, and for multiple answers.

95

The answers array would have the following values after a call to G_parser:

answers[0] = = 112 answers[1] = = 225
answers[2] = = 142 answers[3] = = 155
answers[4] = = 43 answers[5] = = 201
answers[6] = = NULL

Note. In this case as well, neither “coordinate=112” nor “coordinate=112,225,142” would be valid command line argu-
ments, as they do not contain even pairs of coordinates. Each answer’s format (as described by the key_desc member) must
be fulfilled completely.

The overall function of the key_desc and multiple structure members is very similar. The key_desc member is used to specify
the number of required components of a single option answer (e.g. a multi-valued coordinate.) The multiple member tells
G_parser to ask the user for multiple instances of the compound answer as defined by the format in the key_desc structure
member.

Another function of the key_desc structure member is to explain to the user the type of information expected as an answer.
The coordinate example is explained above.

The usage message that is displayed by G_parser in case of an error, or by

G_usage on programmer demand, is shown below. The Option “option” for the command a.out does not have its key_desc
structure member defined.

Usage:

a.out option=name

The use of “name” is a G_parser standard. If the programmer defines the key_desc structure member before a call to G_parser,
the value of the key_desc member replaces “name”. Thus, if the key_desc member is set to “x,y” as was used in an example
above, the following usage message would be displayed:

Usage:

a.out option=x,y

The key_desc structure member can be used by the programmer to clarify the usage message as well as specify single or
multiple required components of a single option answer.

12.15.5.2.4. gisprompt Member

The gisprompt Option structure item requires a bit more description. The three comma-separated

(no spaces allowed) sub-arguments are defined as follows:

First argument :

“old” results in a call to the GRASS library subroutine G_ask_old, “new” to G_ask_new, “any” to G_ask_any,
and “mapset” to G_ask_in_mapset.

Second argument :

This is identical to the “element” argument in the above subroutine calls. It specifies a directory inside the mapset
that may contain the user’s response.

Third argument :

Identical to the “prompt” argument in the above subroutine calls. This is a string presented to the user that describes
the type of data element being requested.

96

Here are two examples:

gisprompt arguments Resulting call

“new,cell,raster” G_ask_new(“”, buffer, “cell”, “raster”)

“old,dig,vector” G_ask_old(“”, buffer, “dig”, “vector”)

12.15.6. Common Questions

“How is automatic prompting turned off?”

GRASS 4.0 introduced a new method for driving GRASS interactive and non-interactive programs as described in
11 Compiling and Installing GRASS Programs. Here is a short overview.

For most programs a user runs a front-end program out of the GRASS bin directory which in turn looks for the
existence of standard, alpha, and contributed interactive and non-interactive versions of the program. If an interac-
tive version exists and the user provided no command line arguments, then that version is executed.

In such a situation, the parser’s default interaction will never be seen by the user. A programmer using the parser is
able to avoid the front-end’s default search for a fully interactive version of the command by placing a call to
G_disable_interactive before calling G_parser (see 12.15.3 Parser Routines for details.)

“Can the user mix options and flags?”

Yes. Options and flags can be given in any order.

“In what order does the parser present options and flags?”

Flags and options are presented by the usage message in the order that the programmer defines them using calls to
G_define_option and G_define_flag .

“How does a programmer query for coordinates?”

For any user input that requires a set of arguments (like a pair of map coordinates,) the programmer specifies the
number of arguments in the key_desc member of the Option structure. For example, if opt->key_desc was set to
“x,y”, the parser will require that the user enter a pair of arguments separated only by a comma. See the source code
for the GRASS commands r.drain or r.cost for examples.

“Is a user required to use full option names?”

No! Users are required to type in only as many characters of an option name as is necessary to make the option
choice unambiguous. If, for example, there are two options, “input=” and “output=”, the following would be valid
command line arguments:

#command i=map1 o=map2
command in=map1 out=map2

“Are options standardized at all?”

Yes. There are a few conventions. Options which identify a single input map are usually “map=”, not “raster=” or
“vector=”. In the case of an input and output map the convention is: “input=xx output=yy”. By passing the ’help’
option to existing GRASS commands, it is likely that you will find other conventions. The desire is to make it as
easy as possible for the user to remember (or guess correctly) what the command line syntax is for a given command.

12.16. String Manipulation Functions
This section describes some routines which perform string manipulation. Strings have the usual C meaning: a NULL termi-
nated array of characters.

97

These next 3 routines copy characters from one string to another.

char *

G_strcpy (dst, src) copy strings

char *dst, *src;

Copies the src string to dst up to and including the NULL which terminates the src string. Returns dst.

char *

G_strncpy (dst, src, n) copy strings

char *dst, *src;

int n;

Copies at most n characters from the src string to dst. If src contains less than n characters, then only those characters are
copied. A NULL byte is added at the end of dst. This implies that dst should be at least n+1 bytes long. Returns dst. Note.
This routine varies from the UNIX strncpy() in that G_strncpy() ensures that dst is NULL terminated, while strncpy() does
not.

char*
G_strcat (dst, src) concatenate strings

char *dst, *src;

Appends the src string to the end of the dst string, which is then NULL terminated. Returns dst.

These next 2 routines remove unwanted white space from a single string.

char *

G_squeeze (s) remove unnecessary white space

char *s;

Leading and trailing white space is removed from the string s and internal white space which is more than one character is
reduced to a single space character. White space here means spaces, tabs, linefeeds, newlines, and formfeeds. Returns s.

G_strip (s) remove leading/training white space

char *s;

Leading and trailing white space is removed from the string s. White space here means only spaces and tabs. There is no
return value.

This next routine copies a string to allocated memory.

char *

G_store (s) copy string to allocated memory

This routine allocates enough memory to hold the string s, copies s to the allocated memory, and returns a pointer to the
allocated memory.

98

These 2 routines convert between upper and lower case.

char *

G_tolcase (s) convert string to lower case

char *s;

Upper case letters in the string s are converted to their lower case equivalent. Returns s.

char*
G_toucase (s) convert string to upper case

char *s;

Lower case letters in the string s are converted to their upper case equivalent. Returns s.

And finally a routine which gives a printable version of control characters.

char *

G_unctrl (c) printable version of control character

unsigned char c;

This routine returns a pointer to a string which contains an English-like representation for the character c. This is useful for
nonprinting characters, such as control characters. Control characters are represented by ctrl-C, e.g., control A is represented
by ctrl-A. 0177 is represented by DEL/RUB. Normal characters remain unchanged.

This routine is useful in combination with G_intr_char for printing the user’s interrupt character :

char G_intr_char();

char *G_unctrl();

printf(“Your interrupt character is %s\n”, G_unctrl(G_intr_char()));

Note. G_unctrl() uses a hidden static buffer which is overwritten from call to call.

12.17. Enhanced UNIX Routines
A number of useful UNIX library routines have side effects which are sometimes undesirable. The routines here provide the
same functions as their corresponding UNIX routine, but with different side effects.

12.17.1. Running in the Background

The standard UNIX fork() routine creates a child process which is a copy of the parent process. The fork() routine is useful
for placing a program into the background. For example, a program that gathers input from the user interactively, but knows
that the processing will take a long time, might want to run in the background after gathering all the input. It would fork()
to create a child process, the parent would exit() allowing the child to continue in the background, and the user could then
do other processing.

However, there is a subtle problem with this logic. The fork() routine does not protect child processes from keyboard
interrupts even if the parent is no longer running. Ke yboard interrupts will also kill background processes that do not
protect themselves. Thus a program which puts itself in the background may never finish if the user interrupts another
program which is running at the keyboard.

99

The solution is to fork() but also put the child process in a process group which is different from the keyboard process
group. G_fork() does this.

G_fork () create a protected child process

This routine creates a child process by calling the UNIX fork() routine. It also changes the process group for the child so
that interrupts from the keyboard do not reach the child. It does not cause the parent to exit().

G_fork() returns what fork() returns: -1 if fork() failed; otherwise 0 to the child, and the process id of the new child to the
parent.

Note. Interrupts are still active for the child. Interrupts sent using the kill command, for example, will interrupt the child. It
is simply that keyboard-generated interrupts are not sent to the child

12.17.2. Partially Interruptible System Call

The UNIX system() call allows one program, the parent, to execute another UNIX command or program as a child process,
wait for that process to complete, and then continue. The problem addressed here concerns interrupts. During the standard
system() call, the child process inherits its responses to interrupts from the parent. This means that if the parent is ignoring
interrupts, the child will ignore them as well. If the parent is terminated by an interrupt, the child will be also.

However, in some cases, this may not be the desired effect. In a menu environment where the parent activates menu choices
by running commands using the system() call, it would be nice if the user could interrupt the command, but not terminate the
menu program itself. The G_system() call allows this.

G_system (command) run a shell level command

The shell level command is executed. Interrupt signals for the parent program are ignored during the call. Interrupt signals
for the command are enabled. The interrupt signals for the parent are restored to their previous settings upon return.

G_system() returns the same value as system(), which is essentially the exit status of the command. See UNIX manual
system(1) for details.

12.18. Miscellaneous
A number of general purpose routines have been provided.

char *

G_date () current date and time

Returns a pointer to a string which is the current date and time. The format is the same as that produced by the UNIX date
command.

G_gets (buf) get a line of input (detect ctrl-z)

char *buf;

This routine does a gets () from stdin into buf. It exits if end-of-file is detected. If stdin is a tty (i.e., not a pipe or redirected)
then ctrl-z is detected. Returns 1 if the read was successful, or 0 if ctrl-z was entered.

Note. This is very useful for allowing a program to reprompt when a program is restarted after being stopped with a ctrl-z. If
this routine returns 0, then the calling program should reprint a prompt and call G_gets () again. For example:

char buf[1024];

do {
 printf(“Enter some input : “) ;
} while (! G_gets(buf)) ;

100

char*
G_home () user’s home directory

Returns a pointer to a string which is the full path name of the user’s home directory.

char

G_intr_char () return interrupt char

This routine returns the user’s keyboard interrupt character. This is the character that generates the SIGINT signal from the
keyboard.

See also G_unctr for converting this character to a printable format.

G_percent (n, total, incr) print percent complete messages

int n;

int total;

int incr;

This routine prints a percentage complete message to stderr. The percentage complete is (n/ total)*100, and these are printed
only for each incr percentage. This is perhaps best explained by example:

include <stdio.h>
int row;
int nrows;
nrows = 1352; /* 1352 is not a special value - example only */
fprintf (stderr, “Percent complete: “);
for (row = 0; row < nrows; row++)
G_percent (row, nrows, 10);

This will print completion messages at 10% increments; i.e., 10%, 20%, 30%, etc., up to 100%. Each message does not
appear on a new line, but rather erases the previous message. After 100%, a new line is printed.

char *

G_program_name () return program name

This routine returns the name of the program as set by the call to G_gisinit.

char*
G_whoami () user’s name

Returns a pointer to a string which is the user’s login name.

G_yes (question, default) ask a yes/no question

char *question;

int default;

This routine prints a question to the user, and expects the user to respond either yes or no. (Invalid responses are rejected
and the process is repeated until the user answers yes or no.)

101

The default indicates what the RETURN key alone should mean. A default of 1 indicates that RETURN means yes, 0
indicates that RETURN means no, and -1 indicates that RETURN alone is not a valid response.

The question will be appended with “(y/n) “, and, if default is not -1, with “[y] “ or “[n] “, depending on the default.

G_yes () returns 1 if the user said yes, and 0 if the user said no.

12.19. Deleted Routines
The following routines have been deleted from the GIS Library:

G_parse_command()
G_parse_command_usage();
G_set_parse_command_usage();

Replaced by G_parser and G_usage.

G_make_histo_grey_scale()
Replaced by G_make_histogram_eq_colors.

12.20. GIS Library Data Structures
Some of the data structures, defined in the “gis.h” header file and used by routines in this library, are described in the
sections below.

12.20.1. struct Cell_head
The raster header data structure is used for two purposes. It is used for raster header information for map layers. It also used
to hold region values. The structure is:

struct Cell_head

{
int format; /* number of bytes per cell */
int compressed; /* compressed(1) or not compressed(0) */
int rows, cols; /* number of rows and columns */
int proj; /* projection */
int zone; /* zone */
double ew_res; /* east-west resolution */
double ns_res; /* north-south resolution */
double north; /* northern edge */
double south; /* southern edge */
double east; /* eastern edge */
double west; /* western edge */

};

The format and compressed fields apply only to raster headers. The format field describes the number of bytes per raster data
value and the compressed field indicates if the raster file is compressed or not. The other fields apply both to raster headers
and regions. The geographic boundaries are described by north, south, east and west. The grid resolution is described by
ew_res and ns_res. The cartographic projection is described by proj and the related zone for the projection by zone. The rows
and cols indicate the number of rows and columns in the raster file, or in the region. See 5.3 Raster Header Format for more
information about raster headers, and 9.1 Region for more information about regions.

The routines described in 12.10.1 Raster Header File use this structure.

102

12.20.2. struct Categories
The Categories structure contains a title for the map layer, the largest category in the map layer, an automatic label genera-
tion rule for missing labels, and a list of category labels.

The structure is declared: struct Categories .

This structure should be accessed using the routines described in 12.10.2 Raster Category File.

12.20.3. struct Colors
The color data structure holds red, green, and blue color intensities for raster categories. The structure has become so
complicated that it will not be described in this manual.

The structure is declared: struct Colors .

The routines described in 12.10.3 Raster Color Table must be used to store and retrieve color information using this struc-
ture.

12.20.4. struct History

The History structure is used to document raster files. The information contained here is for the user. It is not used in any
operational way by GRASS. The structure is:

define MAXEDLINES 25
define RECORD_LEN 80

struct History
{

char mapid[RECORD_LEN];
char title[RECORD_LEN];
char mapset[RECORD_LEN];
char creator[RECORD_LEN];
char maptype[RECORD_LEN];
char datsrc_1[RECORD_LEN];
char datsrc_2[RECORD_LEN];
char keywrd[RECORD_LEN];
int edlinecnt;
char edhist[MAXEDLINES][RECORD_LEN];

};

The mapid and mapset are the raster file name and mapset, title is the raster file title, creator is the user who created the file,
maptype is the map type (which should always be “raster”), datasrc_1 and datasrc_2 describe the original data source,
keywrd is a one-line data description and edhist contains edlinecnt lines of user comments.

The routines described in 12.10.4 Raster History File use this structure. However, there is very little support for manipulat-
ing the contents of this structure. The programmer must manipulate the contents directly.

Note. Some of the information in this structure is not meaningful. For example, if the raster file is renamed, or copied into
another mapset, the mapid and mapset will no longer be correct. Also the title does not reflect the true raster file title. The
true title is maintained in the category file.

Warning. This structure has remained unchanged since the inception of GRASS. There is a good possibility that it will be
changed or eliminated in future releases.

12.20.5. struct Range
The Range structure contains the minimum and maximum values which occur in a raster file.

The structure is declared: struct Range .

The routines described in 12.10.5 Raster Range File should be used to access this structure.

103

12.21. Loading the GIS Library
The library is loaded by specifying $(GISLIB) in the Gmakefile. The following example is a complete Gmakefile which
compiles code that uses this library:

Gmakefile for $(GISLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)
$(GISLIB): # in case the library changes

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

104

Chapter 13

Vector Library

13.1. Introduction
The Vector Library provides the GRASS programmer with routines to process the binary vector files. It is assumed that the
reader has read 4 Database Structure for a general description of GRASS databases, and 6 Vector Map] for details about
vector file formats in GRASS.

The routines in the Vector Library are presented in functional groupings, rather than in alphabetical order. The order of
presentation will, it is hoped, provide a better understanding of how the library is to be used, as well as show the interrela-
tionships among the various routines. Note that a good way to understand how to use these routines is to look at the source
code for GRASS programs which use them.

Note. All routines and global variables in this library, documented or undocumented, start with one of the following prefixes
Vect_ or V1_ or V2_ or dig_. To avoid name conflicts, programmers should not create variables or routines in their own
programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix D. Index to Vector Library.

13.1.1. Include Files

The following file contains definitions and structures required by some of the routines in this library. The programmer
should therefore include this file in any code that uses this library:

#include “Vect.h”

13.1.2. Vector Arc Types
A complete discussion of GRASS vector terminology can be found in 6.1 What is a Vector Map Layer? and the reader
should review that section. Briefly, vector data are stored as arcs representing linear, area, or point features. These arc types
are coded as LINE, AREA, and DOT respectively, (and are # defined in the file “dig_defines.h”, which is automatically
included by the file “Vect.h”).

13.1.3. Levels of Access

There are two lev els of read access to these vector files:

Level One provides simple access to the arc information contained in the vector files. There is no access to category or
topology information at this level.

Level Two provides full access to all the information contained in the vector file and its support files, including line, cat-
egory, node, and area information. This level requires more from the programmer, more memory, and longer startup time.

Note. Higher levels of access are planned, so when checking success return codes for a particular level of access (when
calling Vect_open_old() for example), the programmer should use > = instead of = = for compatibility with future releases.

13.2. Changes in 4.0 from 3.0
The 4.0 Vector Library changed significantly from the Dig Library used with GRASS 3.1. Below is an overview of why the
changes were made, and how to program using the new Vect Library.

13.2.1. Problem

The Digit Library was a collage of subroutines created for developing the map development programs. Few of these subrou-
tines were actually designed as a user access library. They required individuals to assume too much responsibility and

105

control over what happened to the data file. Thus when it came time to change vector data file formats for GRASS 4.0, many
programs also required modification. By using the FILE * structure as the tag for files, there was no means of expansion
since the FILE * structure is not modifiable by GRASS. For example, there was no way to open supporting files since all that
was passed in to dig_init() was a FILE * which had no file name associated with it.

The two different access levels for 3.0 vector files provided very different ways of calling the library; they offered little
consistency for the user.

The Digit Library was originally designed to only have one file open for read or write at a time. Although it was possible in
some cases to get around this, one restriction was the global head structure. Since there was only one instance of this, there
could only be one copy of that information, and thus, only one open vector file.

13.2.2. Solution

The solution to these problems was to design a new user library as an interface to the vector data files. This new library was
designed to provide a simple consistent interface, which hides as much of the details of the data format as possible. It also
can be extended for future enhancements without the need to change existing programs.

13.2.3. Approach
A new library VECTLIB has been created. It provides routines for opening, closing, reading, and writing vector files, as well
as several support functions. The Digit Library has been removed, so that all existing programs will have to be converted to
use the new library. Those routines that existed in the Digit Library and were not affected by these changes continue to exist
in unmodified form, and are now included in the VECTLIB. Most of the commonly used routines have been discarded, and
replaced by the new Vector routines.

The token that is used to identify each map is the Map_info structure. This structure was used by level two functions in
GRASS 3.1. It maintains all information about an individual open file. This structure must be passed to most Vector subrou-
tines. The head structure has gone away, as has the global instance of it which was also called head. All programs which
used this global structure must now create their own local version of it. The structure that replaced struct head is struct
dig_head.

There are still two levels of interface to the vector files (future releases may include more). Level one provides access only to
arc (i.e. polyline) information and to the type of line (AREA, LINE, DOT). Level two provides access to polygons (areas),
attributes, and network topology. There is now only one subroutine to open a file for read, Vect_open_old() and one for
write, Vect_open_new(). Vect_open_old() attempts to open a vector file at the highest possible level of access. It will return
the number of the level at which it opened. Vect_open_new() always opens at level 1 only. If you require that a file be
opened at a lower level (e.g. one), you can call the routine Vect_set_open_level(1); Vect_open_old() will then either open at
level one or fail. If you instead require the highest level access possible, you should not use Vect_set_open_level(), but
instead check the return value of Vect_open_old() to make sure it is greater than or equal to the lowest level at which you
need access. This allows for future levels to work without need for program change.

13.2.4. Implementation

There are two macros set up for use in the Gmakefile to support the Vector library:

EXTRA_CFLAGS = $(VECT_INCLUDE)

must exist in the Gmakefile for any program which uses the Vector library. NOTE: GRASS 3.1 required the line -
I$(DIG_INCLUDE) ;do NOT use-I with VECT_INCLUDE.

$(VECTLIB)

is to be used on the link statement to include the vector library. This basically replaces the $(DIGLIB) macro from 3.1.
Currently this macro represents two different libraries which are in directories: src/mapdev/Vlib and src/mapdev/diglib.
These will probably change in the future and are given only for aid in looking up include files or functions.

106

The basic format of a program that reads a vector file is:

#include “Vect.h” /* new include file */
struct Map_info Map; /* Map info */
struct line_pnts *Points; /* Poly-Line data */
G_gisinit (argv[0]); /* init GIS lib */
if (0 > Vect_open_old (&Map, name, mapset)) /* open file */
 G_fatal_error (“Cannot open vector file”);
Points = Vect_new_line_struct (\h’|209350u’);
while (0 < Vect_read_next_line (&Map, Points)) /* loop reading */

{ /* each line */
/* do something with Points */

}
Vect_destroy_line_struct (Points); /* remove allocation */
Vect_close (&Map); /* close up */

All Vect_ routines work in the same way on any lev el of access unless otherwise noted. Routines that are designed for one
level of access or another have the naming convention V#_ where # is an integer (currently 1 or 2). For example: V2_line_att
() is only valid with level 2 or higher access, and will return the attribute number for a specified line.

13.3. Opening and closing vector maps

Vect_open_old (Map, name, mapset) open existing vector map

struct Map_info *Map;

char *name, *mapset;

This routine opens the vector map name in mapset for reading. It returns the level of successful open, or a negative value on
failure.

Vect_open_new (Map, name) open new vector map

struct Map_info *Map;

char *name;

This routine opens the vector map name in the current mapset for writing. It returns the level of successful open which must
be one, or a negative value on failure.

Vect_set_open_level (level) specify level for opening map
int level;

This routine allows you to specify at which level the map is to be opened. It is recommended that it only be used to force
opening at level one(1). There is no return value.

Vect_close (Map) close a vector map

struct Map_info *Map;

This routine closes an open vector map and cleans up the structures associated with it. It MUST be called before exiting the
program. When used in conjunction with Vect_open_new, it will cause the final writing of the vector header before closing
the vector map. The header data is in the structure Map->head, which also changed in 4.0 to be an instance of the structure
(struct dig_head head) instead of a pointer (struct dig_head *head).

107

13.4. Reading and writing vector maps

Vect_read_next_line (Map, Points) read next vector line

struct Map_info *Map;

struct line_pnts *Points;

This is the primary routine for reading through a vector map. It simply reads the next line from the map into the Points
structure. This routine should not be used in conjunction with any other read_line routine. Return value is type of line, or

-2 on EOF

-1 on Error (generally out of memory)

This routine is modified by:

Vect_rewind
Vect_set_constraint_region
Vect_set_constraint_type

This routine normally only reads lines that are “alive” (as opposed to dead or deleted) from the vector map. This can be
overridden using Vect_set_constraint_type(Map,-1).

Vect_rewind (Map) rewind vector map for re-reading

struct Map_info *Map;

This routine will reset the read pointer to the beginning of the map. This only affects the routine Vect_read_next_line.

Vect_set_constraint_region (Map, n, s, e, w) set restricted region to read vector arcs from

struct Map_info *Map;

double n, s, e, w;

This routine will set a restriction on reading only those lines which fall entirely or partially in the specified rectangular
region. Vect_read_next_line is currently the only routine affected by this, and it does NOT currently cause line clipping.
Constraints affect only the Map specified. They do not affect any other Maps that may be open.

Vect_set_constraint_type (Map, type) specify types of arcs to read

struct Map_info *Map;

int type;

This routine will set a restriction on reading only those lines which match the types specified. This can be any combination
of types bitwise OR’ed together. For example: LINE | AREA would exclude any DOT (or future NEAT) line types.
Vect_read_next_line is currently the only routine affected by this. If type is set to -1, all lines will be read including deleted
or dead lines. An example of this exists in v.out.ascii, where it is desirable to include all lines, (ie. not exclude deleted lines).

Constraints affect only the Map specified. They do not affect any other Maps that may be open.

Vect_remove_constraints (Map) unset any vector read constraints

struct Map_info *Map;

Removes all constraints currently affecting Map.

108

long

Vect_write_line (Map, type, Points) write out arc to vector map

struct Map_info *Map;

int type;

struct line_pnts *Points;

This routine will write out a line to a vector map which has previously been opened for write by Vect_open_new. The type
of line is one of: AREA, LINE, DOT It returns the offset into the file where the line started. If this number is negative or 0,
there was an error.

V1_read_line (Map, Points, offset) read vector arc by specifying offset

struct Map_info *Map;

struct line_pnts *Points;

long offset;

This routine will read a line from the vector map at the specified offset in the file.

This function is available at level 1 or higher.

Return value is the same as Vect_read_next_line.

V2_read_line (Map, Points, line) read vector arc by specifying line id

struct Map_info *Map;

struct line_pnts *Points;

int line;

This routine will read a line from the vector map at the specified line index in the map. Refer to V2_num_lines for number of
lines in the map. This function is available at level 2 or higher.

Return value is the same as Vect_read_next_line.

13.5. Data Structures

struct line_pnts *

Vect_new_line_struct () create new initialized line points structure

This routine MUST be used to initialize any and all line_pnts structures. You cannot simply create a line_pnts
structure and pass its address to routines. It must first be initialized. The correct procedure is: struct line_pnts
*Points;

Points = Vect_new_line_struct();

This routine will print an error message and exit with an error on out of memory condition.

Vect_destroy_line_struct (Points) deallocate line points structure space

struct line_pnts *Points;

This routine will free any memory created for a line_pnts structure. You can use this when you are done with a line_pnts
struct or when you need to free up unused memory. The structure must have been created by Vect_new_line_struct.

109

13.6. Data Conversion

Vect_copy_xy_to_pnts (Points, x, y, n) convert xy arrays to line_pnts structure

struct line_pnts *Points;

double *x, *y; int n;

Since all Vector library routines require the use of the line_pnts structure, and many programs out there work with X and Y
arrays of points, this routine was to created to copy n data pairs from x,y arrays to a line_pnts structure Points. It handles all
memory management.

Vect_copy_pnts_to_xy (Points, x, y, n) convert line_pnts structure to xy arrays
struct line_pnts *Points;
double *x, *y; int *n;

Since all Vector library routines require the use of the line_pnts structure, and many programs out there work with X and Y
arrays of points, this routine was to created to copy data from a line_pnts structure Points into user supplied x,y arrays. The
x,y arrays MUST each be large enough to hold Points.n_points doubles or memory corruption will occur. No bounds
checking is done. Upon return n will contain the number of points copied.

Vect_copy_head_data (from, to) copy vector header struct data

struct dig_head *from, *to;

This routine should be used to copy data from one dig_head struct to another. For example, if a 3.1 program used to fill in
a local dig_head struct and then called dig_write_head_binary() (which no longer exists), you would now call
Vect_copy_head_data (local_head, &Map.head) to copy the data into the Map structure which would then be written out
when Vect_close was called. This routine must used because there are now other fields in the head structure which applica-
tions programmers should not touch, and this program copies only those fields which are available to the programmer.

13.7. Miscellaneous
Vect_get_area_points (Map, area, Points) get defining points for area polygon

struct Map_info *Map;

int area;

struct line_pnts *Points;

This routine replaces dig_get_area(). It will fill in the Points structure with the list of points which describe an area in
clockwise order.

Note. This function, works only for level 2 or higher. It returns the number of points or -1 on error.

V2_num_lines (Map) get number of arcs in vector map

struct Map_info *Map;

Return total number of lines in the vector Map.

Note. The line indexes are numbers from 1 to n, where n is the number of lines in the vector map, as returned by this routine.

V2_num_areas (Map) get number of areas in vector map

struct Map_info *Map;

Return total number of areas in the vector Map.

Note. The area indexes are numbers from 1 to n, where n is the number of areas in the vector map, as returned by this routine.

110

V2_line_att (Map, line) get attribute number of arc

struct Map_info *Map;

int line;

Given arc index n, return its attribute number.

Returns 0 if not labeled or on error.

V2_area_att (Map, area) get attribute number of area

struct Map_info *Map;

int area;

Given area index n, return its attribute number.

Returns 0 if not labeled or on error.

V2_get_area (Map, n, pa) get area info from id
struct Map_info *Map;
int n;
P_AREA **pa;

Given area index n, the P_AREA information for the area is read into a private structure. A pointer to this structure is placed
in pa. The pointer pa is valid until the next call to this routine. Note that *pa does not need to point to anything on entry.
Returns 0 if found, or negative on error.

V2_get_area_bbox (Map, area, n, s, e, w) get bounding box of area

struct Map_info *Map;

int area; double *n, *s, *e, *w;

Given area index n, set n (north, s (south), e (east), and w (west) to the values of the bounding box for the area.

Returns 0 if ok, or -1 on error.

V2_get_line_bbox (Map, line, n, s, e, w) get bounding box of arc

struct Map_info *Map;

int line; double *n, *s, *e, *w;

Given arc index n, set n (north, s (south), e (east), and w (west) to the values of the bounding box for the arc.

Returns 0 if ok, or -1 on error.

Vect_print_header (Map) print header info to stdout
struct Map_info *Map;

This routine replaces dig_print_header(), and simply displays selected information from the header. Namely organization,
map name, source date, and original scale.

Vect_level (Map) get open level of vector map

struct Map_info *Map;

This routine will return the number of the level at which a Map is opened at or -1 if Map is not opened.

111

13.8 Routines that remain from GRASS 3.1

dig_point_to_area (Map, x, y) find which area point is in
struct Map_info *Map;
double x, y;

Returns the index of the area containing the point x,y, or 0 if none found.

double

dig_point_in_area (Map, x, y, pa) is point in area?

struct Map_info *Map;

double x, y;

P_AREA *pa;

Given a filled P_AREA structure pa, determine if x,y is within the area. The structure pa can be filled with V2_get_area.

Returns 0.0 if x,y is not in the area, the positive minimum distance to the nearest area edge if x,y is inside the area, or -1.0 on
error.

dig_point_to_line (Map, x, y, type) find which arc point is closest to

struct Map_info *Map;

double x, y; char type;

Returns the index of the arc which is nearest to the point x,y. The point x,y must be within the arc’s bounding box. Set type
to a combination of LINE, AREA, or DOT (eg. LINE | AREA), or (char) -1 if you want to search all arc types.

dig_check_dist (Map, n, x, y, d) find distance of point to line

struct Map_info *Map;

int n; double x, y; double *d;

Computes d, the square of the minimum distance from point x,y to arc nR. Returns the number of the segment that was
closest, or -1 on error. The segment number, in combination with V2_read_line can be used to determine the endpoints of the
closest line-segment in the arc.

13.9. Loading the Vector Library
The library is loaded by specifying $(VECTLIB) in the Gmakefile. The following example is a complete Gmakefile which
compiles code that uses this library:

Gmakefile using $(VECTLIB)

OBJ = main.o sub1.o sub2.o
EXTRA_CFLAGS = $(VECT_INCLUDE)
$(BIN_MAIN_CMD)/pgm: $(OBJ) $(VECTLIB) $(GISLIB)
 $(CC) $(LDFLAGS) -o $@ $(OBJ) $(VECTLIB) $(GISLIB)
$(VECTLIB): # in case the library changes

Note. EXTRA_CFLAGS tells the C compiler where additional # include files are located. This is necessary since the
required # include files do not currently live in the normal GRASS # include directory. Notice that -I must not be provided
before the $(VECT_INCLUDE)

Note. Because $(VECTLIB) currently references two distinct libraries, on occasion it may be necessary to specify it twice on
the link command because of library cross-references.

See 11 Compiling and Installing GRASS Program for a complete discussion of Gmakefiles.

112

Chapter 14

Imagery Library

14.1. Introduction
The Imagery Library was created for version 3.0 of GRASS to support integrated image processing directly in GRASS. It
contains routines that provide access to the group database structure which was also introduced in GRASS 3.0 for the same
purpose. It is assumed that the reader has read 4 Database Structure for a general description of GRASS databases, 8 Image
Data: Groups for a description of imagery groups, and 5 Raster Maps for details about map layers in GRASS. The routines
in the Imagery Library are presented in functional groupings, rather than in alphabetical order. The order of presentation
will, it is hoped, provide a better understanding of how the library is to be used, as well as show the interrelationships among
the various routines. Note that a good way to understand how to use these routines is to look at the source code for GRASS
programs which use them. Most routines in this library require that the header file “imagery.h” be included in any code
using these routines. Therefore, programmers should always include this file when writing code using routines from this
library:

include “imagery.h”

This header file includes the “gis.h” header file as well.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix I_. To avoid name
conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix E. Index to Imagery Librar .

14.2. Group Processing
The group is the key database structure which permits integration of image processing in GRASS.

14.2.1. Prompting for a Group

The following routines interactively prompt the user for a group name in the current mapset. In each, the prompt string will
be printed as the first line of the full prompt which asks the user to enter a group name. If prompt is the empty string “”, then
an appropriate prompt will be substituted. The name that the user enters is copied into the group buffer. These routines have
a built-in ’list’ capability which allows the user to get a list of existing groups.

The user is required to enter a valid group name, or else hit the RETURN key to cancel the request. If the user enters an
invalid response, a message is printed, and the user is prompted again. If the user cancels the request, 0 is returned; other-
wise, 1 is returned.

I_ask_group_old (prompt, group) prompt for an existing group

char *prompt;

char *group;

Asks the user to enter the name of an existing group in the current mapset.

I_ask_group_new (prompt, group) prompt for new group

char *prompt;

char *group;

Asks the user to enter a name for a group which does not exist in the current mapset.

113

I_ask_group_any (prompt, group) prompt for any valid group name
char *prompt;
char *group;

Asks the user to enter a valid group name. The group may or may not exist in the current mapset.

Note. The user is not warned if the group exists. The programmer should use I_find_group to determine if the group exists.

Here is an example of how to use these routines. Note that the programmer must handle the 0 return properly:

char group[50];

if (! I_ask_group_any (“Enter group to be processed”, group))

 exit(0);

14.2.2. Finding Groups in the Database

Sometimes it is necessary to determine if a given group already exists. The following routine provides this service:

I_find_group (group) does group exist?

char *group;

Returns 1 if the specified group exists in the current mapset; 0 otherwise.

14.2.3. REF File

These routines provide access to the information contained in the REF file for groups and subgroups, as well as routines to
update this information. They use the Ref structure, which is defined in the “imagery.h” header file; see 14.4 Imagery
Library Data Structures.

The contents of the REF file are read or updated by the following routines:

I_get_group_ref (group, ref) read group REF file

char *group;

struct Ref *ref;

Reads the contents of the REF file for the specified group into the ref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

I_put_group_ref (group, ref) write group REF file

char *group;

struct Ref *ref;

Writes the contents of the ref structure to the REF file for the specified group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create the group, if it does not already exist.

I_get_subgroup_ref (group, subgroup, ref) read subgroup REF file

 char *group; char *subgroup;

struct Ref *ref;

Reads the contents of the REF file for the specified subgroup of the specified group into the ref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

114

I_put_subgroup_ref (group, subgroup, ref) write subgroup REF file

char *group;

char *subgroup;

struct Ref *ref;

Writes the contents of the ref structure into the REF file for the specified subgroup of the specified group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create the subgroup, if it does not already exist.

These next routines manipulate the Ref structure:

I_init_group_ref (ref) initialize Ref structure
struct Ref *ref;

This routine initializes the ref structure for other library calls which require a Ref structure. This routine must be called
before any use of the structure can be made.

Note. The routines I_get_group_ref and I_get_subgroup_ref call this routine automatically.

I_add_file_to_group_ref (name, mapset, ref) add file name to Ref structure

char *name;

char *mapset;

struct Ref *ref;

This routine adds the file name and mapset to the list contained in the ref structure, if it is not already in the list. The ref
structure must have been properly initialized. This routine is used by programs, such as i.maxlik, to add to the group new
raster files created from files already in the group.

Returns the index into the file array within the ref structure for the file after insertion; see 14.4 Imagery Library Data
Structures.

I_transfer_group_ref_file (src, n, dst) copy Ref lists

struct Ref *src;

int n;

struct Ref *dst;

This routine is used to copy file names from one Ref structure to another. The name and mapset for file n from the src
structure are copied into the dst structure (which must be properly initialized).

For example, the following code copies one Ref structure to another :

struct Ref src,dst;
int n;
/* some code to get information into src */
..
.
I_init_group_ref (&dst);
for (n = 0; n < src.nfiles; n++)
 I_transfer_group_ref_file (&src, n, &dst);

This routine is used by i.points to create the REF file for a subgroup.

115

I_free_group_ref (ref) free Ref structure
struct Ref *ref;

This routine frees memory allocated to the ref structure.

14.2.4. TARGET File

The following two routines read and write the TARGET file.

I_get_target (group, location, mapset) read target information

char *group;

char *location;

char *mapset;

Reads the target location and mapset from the TARGET file for the specified group. Returns 1 if successful; 0 otherwise
(and prints a diagnostic error). This routine is used by i.points and i.rectify and probably should not be used by other
programs.

Note. This routine does not validate the target information.

I_put_target (group, location, mapset) write target information

char *group;

char *location;

char *mapset;

Writes the target location and mapset to the TARGET file for the specified group. Returns 1 if successful; 0 otherwise (but
no error messages are printed).

This routine is used by i.target and probably should not be used by other programs.

Note. This routine does not validate the target information.

14.2.5. POINTS File

The following routines read and write the POINTS file, which contains the image registration control points. This file is
created and updated by the program i.points,and read by i.rectify.

These routines use the Control_Points structure, which is defined in the “imagery.h” header file; see 14.4 Imagery Library
Data Structures.

Note. The interface to the Control_Points structure provided by the routines below is incomplete. A routine to initialize the
structure is needed.

I_get_control_points (group, cp) read group control points

char *group;

struct Control_Points *cp;

Reads the control points from the POINTS file for the group into the cp structure. Returns 1 if successful; 0 otherwise (and
prints a diagnostic error).

Note. An error message is printed if the POINTS file is invalid, or does not exist.

116

I_new_control_point (cp, e1, n1, e2, n2, status) add new control point

struct Control_Points *cp;

double e1, n1;

double e2, n2;

int status;

Once the control points have been read into the cp structure, this routine adds new points to it. The new control point is
given by e1 (column) and n1 (row) on the image, and the e2 (east) and n2 (north) for the target database. The value of status
should be 1 if the point is a valid point; 0 otherwise.

I_put_control_points (group, cp) write group control points

char *group;

struct Control_Points *cp;

Writes the control points from the cp structure to the POINTS file for the specified group.

Note. Points in cp with a negative status are not written to the POINTS file.

14.3. Loading the Imagery Library
The library is loaded by specifying $(IMAGERYLIB) in the Gmakefile. The following example is a complete Gmakefile
which compiles code that uses this library:

Gmakefile for $(IMAGERYLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(IMAGERYLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(IMAGERYLIB) $(GISLIB)

$(IMAGERYLIB): # in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that library. See 12 GIS Library or details on
that library. See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

14.4. Imagery Library Data Structures
Some of the data structures in the “imagery.h” header file are described below.

14.4.1. struct Ref

The Ref structure is used to hold the information from the REF file for groups and subgroups. The structure is:

struct Ref
{

int nfiles; /* number of REF files */
struct Ref_Files
{
 char name[30]; /* REF file name */
 char mapset[30]; /* REF file mapset */
} *file;
struct Ref_Color
{
 unsigned char *table; /* color table for min-max values */
 unsigned char *index; /* data translation index */

117

 unsigned char *buf; /* data buffer for reading color file */
 int fd; /* for image i/o */
 CELL min, max; /* min,max CELL values */
 int n; /* index into Ref_Files */
} red, grn, blu;

};

The Ref structure has nfiles (the number of raster files), file (the name and mapset of each file), and red,grn,blu (color
information for the group or subgroup).

There is no function interface to the nfiles and file elements in the structure. This means that the programmer must reference
the elements of the structure directly. The name and mapset for the i th file are file[i].name ,andfile[i].mapset .

For example, to print out the names of the raster files in the structure:

int i;
struct Ref ref;
.
..
/* some code to get the REF file for a group into ref */

..
for (i = 0; i < ref.nfiles; i++)
 printf (“%s in %s\n”, ref.file[i].name, ref.file[i].mapset);

14.4.2. struct Control_Points

The Control_Points structure is used to hold the control points from the group POINTS file. The structure is:

struct
Control_Points

{
int count; /* number of control points */
double *e1; /* image east (column) */
double *n1; /* image north (row) */
double *e2; /* target east */
double *n2; /* target north */
int *status; /* status of control point */

};
The number of control points is count.

Control point i is e1 [i], n1 [i], e2 [i], n2 [i], and its status is status [i].

118

Chapter 15

Raster Graphics Library

15.1. Introduction
The Raster Graphics Library provides the programmer with access to the GRASS graphics devices. All video graphics
calls are made through this library (directly or indirectly). No standard/portable GRASS video graphics program drives
any video display directly. This library provides a powerful, but limited number of graphics capabilities to the programmer.
The tremendous benefit of this approach is seen in the ease with which GRASS graphics applications programs port to new
machines or devices. Because no device-dependent code exists in application programs, virtually all GRASS graphics pro-
grams port without modification. Each graphics device must be provided a driver (or translator program). At run-time,
GRASS graphics programs rendezvous with a user-selected driver program. Two significant prices are paid in this approach
to graphics: 1) graphics displays run significantly slower, and 2) the programmer does not have access to fancy (and some-
times more efficient) resident library routines that have been specially created for the device.

This library uses a couple of simple concepts. First, there is the idea of a current screen location. There is nothing which
appears on the graphics monitor to indicate the current location, but many graphic commands begin their graphics at this
location. It can, of course, be set explicitly. Second, there is always a current color. Many graphic commands will do their
work in the currently chosen color. The programmer always works in the screen coordinate system. Unlike many graphics
libraries developed to support CAD, there is no concept of a world coordinate system. The programmer must address
graphics requests to explicit screen locations. This is necessary, especially in the interest of fast raster graphics.

The upper left hand corner of the screen is the origin. The actual pixel rows and columns which define the edge of the video
surface are returned with calls to R_screen_left, R_screen_rite, R_screen_bot, and R_screen_top.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix R_. To avoid name
conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix G. Index to Raster Graphics Library.

15.2. Connecting to the Driver
Before any other graphics calls can be made, a successful connection to a running and selected graphics driver must be made.

R_open_driver () initialize graphics

Initializes connection to current graphics driver. Refer to GRASS User’s Manual entries on the d.mon command. If connec-
tion cannot be made, the application program sends a message to the user stating that a driver has not been selected or could
not be opened. Note that only one application program can be connected to a graphics driver at once.

After all graphics have been completed, the driver should be closed.

R_close_driver () terminate graphics

This routine breaks the connection with the graphics driver opened by R_open_driver().

15.3. Colors
GRASS is highly dependent on color for distinguishing between different categories. No graphic patterning is supported in
any automatic way. There are two color modes. Fixed color refers to set and immutable color look-up tables on the hardware
device. In some cases this is necessary because the graphics device does not contain programmer definable color look-up
tables (LUT). Floating colors use the LUTs of the graphics device often in an interactive mode with the user. The basic impact
on the user is that under the fixed mode, multiple maps can be displayed on the device with apparently no color interference
between maps. Under float mode, the user may interactively manipulate the hardware color tables (using programs such as
d.colors). Other than the fact that in float mode no more colors may be used than color registers available on the user’s
chosen driver, there are no other programming repercussions.

119

R_color_table_fixed () select fixed color table

Selects a fixed color table to be used for subsequent color calls. It is expected that the user will follow this call with a call
to erase and reinitialize the entire graphics screen.

Returns 0 if successful, non-zero if unsuccessful.

R_color_table_float () select floating color table

Selects a float color table to be used for subsequent color calls. It is expected that the user will follow this call with a call to
erase and reinitialize the entire graphics screen.

Returns 0 if successful, non-zero if unsuccessful.

Colors are set using integer values in the range of 0-255 to set the red, green, and blue intensities. In float mode, these
values are used to directly modify the hardware color look-up tables and instantaneously modify the appearance of colors on
the monitor. In fixed mode, these values modify secondary look-up tables in the devices driver program so that the colors
involved point to the closest available color on the device.

R_reset_color (red, green, blu, num) define single color

unsigned char red, green, blue ;

int num ;

Sets color number num to the intensities represented by red, green, and blue.

R_reset_colors (min,max,red,green,blue) define multiple colors

int min, max ;

unsigned char *red, *green, *blue ;

Sets color numbers min through max to the intensities represented in the arrays red, green, and blue.

R_color (color) select color

int color ;

Selects the color to be used in subsequent draw commands.

R_standard_color (color) select standard color

int color ;

Selects the standard color to be used in subsequent draw commands. The color value is best retrieved using D_translate_color.
See 16 Display Graphics Library.

R_RGB_color (red,green,blue) select color

int red, green, blue ;

When in float mode (see R_color_table_float), this call selects the color most closely matched to the red, green, and blue
intensities requested. These values must be in the range of 0-255.

15.4. Basic Graphics
Several calls are common to nearly all graphics systems. Routines exist to determine screen dimensions, as well as routines
for moving, drawing, and erasing.

120

R_screen_bot () bottom of screen

Returns the pixel row number of the bottom of the screen.

R_screen_top () top of screen

Returns the pixel row number of the top of the screen.

R_screen_left () screen left edge

Returns the pixel column number of the left edge of the screen.

R_screen_rite () screen right edge

Returns the pixel column number of the right edge of the screen.

R_move_abs (x,y) move current location

int x, y;

Move the current location to the absolute screen coordinate x,y. Nothing is drawn on the screen.

R_move_rel (dx,dy) move current location
int dx, dy;

Shift the current screen location by the values in dx and dy:

Newx = Oldx + dx;
Newy = Oldy + dy;

Nothing is drawn on the screen.

R_cont_abs (x,y) draw line

int x, y;

Draw a line using the current color, selected via R_color, from the current location to the location specified by x,y. The
current location is updated to x,y.

R_cont_rel (dx,dy) draw line

int dx, dy;

Draw a line using the current color, selected via R_color, from the current location to the relative location specified by dx
and dy. The current location is updated:

Newx = Oldx + dx;

Newy = Oldy + dy;

R_box_abs (x1,y1,x2,y2) fill a box

int x1,y1;

int x2,y2;

A box is drawn in the current color using the coordinates x1,y1 and x2,y2 as opposite corners of the box. The current
location is updated to x2,y2.

121

R_box_rel (dx,dy) fill a box

int dx, dy;

A box is drawn in the current color using the current location as one corner and the current location plus dx and dy
as the opposite corner of the box. The current location is updated:

Newx = Oldx + dx;

Newy = Oldy + dy;

R_erase () erase screen

Erases the entire screen to black.

R_flush () flush graphics

Send all pending graphics commands to the graphics driver. This is done automatically when graphics input requests are
made.

R_stabilize () synchronize graphics

Send all pending graphics commands to the graphics driver and cause all pending graphics to be drawn (provided the driver
is written to comply). This routine does more than R_flush and in many instances is the more appropriate routine fo the two
to use.

15.5. Poly Calls
In many cases strings of points are used to describe a complex line, a series of dots, or a solid polygon. Absolute and relative
calls are provided for each of these operations.

R_polydots_abs (x,y,num) draw a series of dots

int *x, *y;

int num;

Pixels at the num absolute positions in the x and y arrays are turned to the current color. The current position is left updated
to the position of the last dot.

R_polydots_rel (x,y,num) draw a series of dots

int *x, *y;

int num;

Pixels at the num relative positions in the x and y arrays are turned to the current color. The first position is relative to the
starting current location; the succeeding positions are then relative to the previous position. The current position is updated
to the position of the last dot.

R_polygon_abs (x,y,num) draw a closed polygon
int *x, *y;
int num;

The num absolute positions in the x and y arrays outline a closed polygon which is filled with the current color. The current
position is left updated to the position of the last point.

122

R_polygon_rel (x,y,num) draw a closed polygon

int *x, *y;

int num;

The num relative positions in the x and y arrays outline a closed polygon which is filled with the current color. The first
position is relative to the starting current location; the succeeding positions are then relative to the previous position. The
current position is updated to the position of the last point.

R_polyline_abs (x,y,num) draw an open polygon

int *x, *y;

int num;

The num absolute positions in the x and y arrays are used to generate a multisegment line (often curved). This line is drawn
with the current color. The current position is left updated to the position of the last point.

Note. It is not assumed that the line is closed, i.e., no line is drawn from the last point to the first point.

R_polyline_rel (x,y,num) draw an open polygon

int *x, *y;

int num;

The num relative positions in the x and y arrays are used to generate a multisegment line (often curved). The first position is
relative to the starting current location; the succeeding positions are then relative to the previous position. The current
position is updated to the position of the last point. This line is drawn with the current color.

Note. No line is drawn between the last point and the first point.

15.6. Raster Calls
GRASS, being principally a raster-based data system, requires efficient drawing of raster information to the display device.
These calls provide that capability.

R_raster (num,nrows,withzero,raster) draw a raster

int num, nrows, withzero ;

int *raster ;

Starting at the current position, the num colors represented in the raster array are drawn for nrows consecutive pixel rows.
The withzero flag is used to indicate whether 0 values are to be treated as a color (1) or should be ignored (0). If ignored,
those screen pixels in these locations are not modified. This option is useful for graphic overlays.

R_set_RGB_color (red,green,blue) initialize graphics

unsigned char red[256], green[256], blue[256] ;

The three 256 member arrays, red, green, and blue, establish look-up tables which translate the raw image values supplied
in R_RGB_raster to color intensity values which are then displayed on the video screen. These two commands are tailor-
made for imagery data coming off sensors which give values in the range of 0-255.

R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster

int num, nrows, withzero ;

unsigned char *red, *green, *blue ;

123

This is useful only in fixed color mode (see R_color_table_fixed). Starting at the current position, the num colors repre-
sented by the intensities described in the red, green, and blue arrays are drawn for nrows consecutive pixel rows. The raw
values in these arrays are in the range of 0-255. They are used to map into the intensity maps which were previously set with
R_set_RGB_color. The withzero flag is used to indicate whether 0 values are to be treated as a color (1) or should be
ignored (0). If ignored, those screen pixels in these locations are not modified. This option is useful for graphic overlays.

15.7. Text
These calls provide access to built-in vector fonts which may be sized and clipped to the programmer’s specifications.

R_set_window (top,bottom,left,right) set text clipping frame
int top, bottom, left, right ;

Subsequent calls to R_text will have text strings clipped to the screen frame defined by top, bottom, left, right.

R_font (font) choose font

char *font ;

Set current font to font. Av ailable fonts are:

Font Name Description
cyrilc cyrillic
gothgbt Gothic Great Britain triplex
gothgrt Gothic German triplex
gothitt Gothic Italian triplex
greekc Greek complex
greekcs Greek complex script
greekp Greek plain
greeks Greek simplex
italicc Italian complex
italiccs Italian complex small
italict Italian triplex
romanc Roman complex
romancs Roman complex small
romand Roman duplex
romanp Roman plain
romans Roman simplex
romant Roman triplex
scriptc Script complex
scripts Script simplex

R_text_size (width, height) set text size

int width, height ;

Sets text pixel width and height to width and height.

R_text (text) write text

char *text ;

Writes text in the current color and font, at the current text width and height, starting at the current screen location.

124

R_get_text_box (text, top, bottom, left, right) get text extents

char *text ;

int *top, *bottom, *left, *right ;

The extent of the area enclosing the text is returned in the integer pointers top, bottom, left, and right. No text is actually
drawn. This is useful for capturing the text extent so that the text location can be prepared with proper background or border.

15.8. User Input
The raster library provides mouse (or other pointing device) input from the user. This can be accomplished with a pointer, a
rubber-band line or a rubber-band box. Upon pressing one of three mouse buttons, the current mouse location and the button
pressed are returned.

R_get_location_with_pointer (nx,ny,button) get mouse location using pointer

int *nx, *ny, *button ;

A cursor is put on the screen at the location specified by the coordinate found at the nx,ny pointers. This cursor tracks the
mouse (or other pointing device) until one of three mouse buttons are pressed. Upon pressing, the cursor is removed from the
screen, the current mouse coordinates are returned by the nx and ny pointers, and the mouse button (1 for left, 2 for middle,
and 3 for right) is returned in the button pointer.

R_get_location_with_line (x,y,nx,ny,button) get mouse location using a line

int x, y; int *nx, *ny, *button ;

Similar to R_get_location_with_pointer except the pointer is replaced by a line which has one end fixed at the coordinate
identified by the x,y values. The other end of the line is initialized at the coordinate identified by the nx,ny pointers. This
end then tracks the mouse until a button is pressed. The mouse button (1 for left, 2 for middle, and 3 for right) is returned in
the button pointer.

R_get_location_with_box (x,y,nx,ny,button) get mouse location using a box
int x, y; int *nx, *ny, *button ;

Identical to R_get_location_with_line except a rubber-band box is used instead of a rubber-band line.

15.9. Loading the Raster Graphics Library
The library is loaded by specifying $(RASTERLIB) in the Gmakefile. The following example is a complete Gmakefile which
compiles code that uses this library:

Gmakefile for $(RASTERLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(RASTERLIB) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(RASTERLIB) $(GISLIB)
$(RASTERLIB): # in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that library. See 12 GIS Library for details on
that library. This library is usually loaded with the $(DISPLAYLIB). See 16 Display Graphics Library for details on that
library.

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

125

Chapter 16

Display Graphics Library

16.1. Introduction
This library provides a wide assortment of higher level graphics commands which in turn use the graphics raster library
primitives. It is highly recommended that this section be used to understand how some of the GRASS graphics commands
operate. Such programs like d.vect, d.graph, and d.rast demonstrate how these routines work together. The routines fall into
four basic sets: 1) frame creation and management, 2) coordinate conversion routines, 3) specialized efficient raster display
routines, and 4) assorted miscellaneous routines like pop-up menus and line clipping.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix D_. To avoid name
conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix F. Index to Display Graphics Library.

16.2. Library Initialization
The following routine performs a required setup procedure. Its use is encouraged and simplifies the use of this library.

D_setup (clear) initialize/create a frame
int clear

This routine performs a series of initialization steps for the current frame. It also creates a full screen frame if there is no
current frame. The clear flag, if set to 1, tells this routine to clear any information associated with the frame: graphics as well
as region information.

This routine relieves the programmer of having to perform the following idiomatic function call sequence

struct Cell_head region;

char name[128];

int T,B,L,R;

/* get current frame, create full_screen frame if no current frame */

if (D_get_cur_wind(name)) {
T =R_screen_top();
B =R_screen_bot();
L =R_screen_left();
R =R_screen_rite();
strcpy (name, “full_screen”);
D_new_window (name, T, B, L, R);

}
if (D_set_cur_wind(name)) G_fatal_error(“Current graphics frame not available”) ;

if (D_get_screen_window(&T, &B, &L, &R)) G_fatal_error(“Getting graphics coordinates”) ;

/* clear the frame, if requested to do so */
if (clear) {

126

D_clear_window();

R_standard_color(D_translate_color(“black”));
R_box_abs (L, T, R, B);
}
/* Set the map region associated with graphics frame */
G_get_set_window (®ion);
if (D_check_map_window(®ion)) G_fatal_error(“Setting graphics coordinates”); if(G_set_window (®ion) <
0) G_fatal_error (“Invalid graphics region coordinates”);

/* Determine conversion factors */

if (D_do_conversions(®ion, T, B, L, R)) G_fatal_error(“Error calculating graphics-region conversions”)

/* set text clipping, for good measure, and set a starting location */

R_set_window (T,B,L,R);

R_move_abs(0,0);

D_move_abs(0,0);

16.3. Frame Management
The following set of routines create, destroy, and otherwise manage graphic frames.

D_new_window (name, top, bottom, left, right) create new graphics frame

char *name ;

int top, bottom, left, right ;

Creates a new frame name with coordinates top, bottom, left, and right. If name is the empty string “” (i.e., *name = = 0),
the routine returns a unique string in name.

D_set_cur_wind (name) set current graphics frame

char *name ;

Selects the frame name to be the current frame. The previous current frame (if there was one) is outlined in grey. The selected
current frame is outlined in white.

D_get_cur_wind (name) identify current graphics frame

char *name ;

Captures the name of the current frame in string name.

D_show_window (color) outlines current frame

int color ;

Outlines current frame in color. Appropriate colors are found in $GISBASE/src/D/libes/colors.h and are spelled with low-
ercase letters.

D_get_screen_window (top, bottom, left, right) retrieve current frame coordinates

int *top, *bottom, *left, *right ;

Returns current frame’s coordinates in the pointers top, bottom, left, and right.

127

D_check_map_window (region) assign/retrieve current map region
struct Cell_head *region ;

Graphics frames can have GRASS map regions associated with them. This routine passes the map region to the current
graphics frame. If a GRASS region is already associated with the graphics frame, its information is copied into region for use
by the calling program. Otherwise region is associated with the current graphics frame.

Note this routine is called by D_setup.

D_reset_screen_window (top, bottom, left, right) resets current frame position

int top, bottom, left, right ;

Re-establishes the screen position of a frame at the location specified by top, bottom, left, and right.

D_timestamp () give current time to frame

Timestamp the current frame. This is used primarily to identify which frames are on top of other, specified frames.

D_erase_window () erase current frame

Erases the frame on the screen using the currently selected color.

D_remove_window () remove a frame

Removes any trace of the current frame.

D_clear_window () clears information about current frame

Removes all information about the current frame. This includes the map region and the frame content lists.

16.4. Frame Contents Management
This special set of graphics frame management routines maintains lists of frame contents.

D_add_to_list (string) add command to frame display list
char *string ;

Adds string to list of screen contents. By convention, string is a command string which could be used to recreate a part of
the graphics contents. This should be done for all screen graphics except for the display of raster maps. The D_set_cell_name
routine is used for this special case.

D_set_cell_name (name) add raster map name to display list

char *name ;

Stores the raster map name in the information associated with the current frame.

D_get_cell_name (name) retrieve raster map name

char *name ;

Returns the name of the raster map associated with the current frame.

D_clear_window () clear frame display lists

Removes all display information lists associated with the current frame.

128

16.5. Coordinate Transformation Routines
These routines provide coordinate transformation information. GRASS graphics programs typically work with the following
three coordinate systems:

Coordinate system Origin
Array upperleft (NW)
Display screen upper left (NW)
Earth lower left (SW)

Display screen coordinates are the physical coordinates of the display screen and are referred to as x and y. Earth region
coordinates are from the GRASS database regions and are referred to as east and north. Array coordinates are the columns
and rows relative to the GRASS region and are referred to as column and row. The routine D_do_conversions is called to
establish the relationships between these different systems. Then a wide variety of accompanying calls provide access to
conversion factors as well as conversion routines.

D_do_conversions (region, top, bottom, left, right) initialize conversions

struct Cell_head *region ;

int top, bottom, right, left ;

The relationship between the earth region and the top, bottom, left, and right screen coordinates is established, which then
allows conversions between all three coordinate systems to be performed.

Note this routine is called by D_setup.

In the following routines, a value in one of the coordinate systems is converted to the equivalent value in a different coordi-
nate system. The routines are named based on the coordinates systems involved. Display screen coordinates are represented
by d, array coordinates by a, and earth coordinates by u (which used to stand for UTM).

double

D_u_to_a_row (north) earth to array (north)

double north ;

Returns a row value in array coordinate system when provided a corresponding north value in the earth coordinate system.

double

D_u_to_a_col (east) earth to array (east

 double east ;

Returns a column value in the array coordinate system when provided the corresponding east value in the earth coordinate
system.

double

D_a_to_d_row (row) array to screen (row)

double row ;

Returns a y value in the screen coordinate system when provided the corresponding row value in the array coordinate system.

double
D_a_to_d_col (column) array to screen (column)

double column ;

Returns an x value in screen coordinate system when provided a corresponding column value in the array coordinate system.

129

double

D_u_to_d_row (north) earth to screen (north)

double north ;

Returns a y value in the screen coordinate system when provided the corresponding north value in the earth coordinate
system.

double

D_u_to_d_col (east) earth to screen (east)

double east ;

Returns an x value in the screen coordinate system when provided the corresponding east value in the earth coordinate
system.

double

D_d_to_u_row (y) screen to earth (y)

double y ;

Returns a north value in the earth coordinate system when provided the corresponding y value in the screen coordinate
system.

double

D_d_to_u_col (x) screen to earth (x)

double x ;

Returns an east value in the earth coordinate system when provided the corresponding x value in the screen coordinate
system.

double
D_d_to_a_row (y) screen to array (y)

double y ;

Returns a row value in the array coordinate system when provided the corresponding y value in the screen coordinate system.

double

D_d_to_a_col (x) screen to array (x)

double x ;

Returns a column value in the array coordinate system when provided the corresponding x value in the screen coordinate
system.

int

D_reset_color (data, r, g, b) reset raster color value

CELL data ;

int r, g, b ;

Modifies the hardware colormap, provided that the graphics are not using fixed more colors. The hardware color register
corresponding to the raster data value is set to the combined values of r,g,b. This routine may only be called after a call to
D_set_colors. D_reset_color is for use by programs such as d.colors. Returns 1 if the hardware colormap was updated, 0 if
not. A 0 value will result if either a fixed color table transition is in effect, or because the data is not in the color range set by
the call D_set_colors.

130

int

D_check_colormap_size (min,max,ncolors) verify a range of colors

CELL min, max ;

int *ncolors ;

This routine determines if the range of colors fits into the hardware colormap. If it does, then the colors can be loaded
directly into the hardware colormap and color toggling will be possible. Otherwise a fixed lookup scheme must be used, and
color toggling will not be possible.

If the colors will fit, ncolors is set to the required number of colors (computed as max-min+2) and 1 is returned. Otherwise
ncolors is set to the number of hardware colors and 0 is returned.

void
D_lookup_colors (data, n, colors) change to hardware color

CELL *data ;

int n ;

struct Colors *colors ;

The n data values are changed to their corresponding hardware color number. The colors structure must be the same one that
was passed to D_set_colors.

void

D_color (cat, colors) select raster color for line

CELL cat

struct Colors #colors ;

D_color specifies a raster color to use for line drawing. See R_color for a related routine.

16.6. Raster Graphics
The display of raster graphics is very different from the display of vector graphics. While vector graphics routines can
efficiently make use of world coordinates, the efficient rendering of raster images requires the programmer to work within
the coordinate system of the graphics device. These routines make it easy to do just that. The application of these routines
may be inspected in such commands as d.rast, r.combine and r.weight which display graphics results to the screen.

D_set_colors (colors) establish raster colors for graphics

struct Colors *colors;

This routine sets the colors to be used for raster graphics. The colors structure must be either be read using G_read_colors
or otherwise prepared using the routines described in 12.10.3 Raster Color Table.

Return values are 1 if the colors will fit into the hardware color map; 0 otherwise (in which case a fixed color approximation
based on these colors will be applied). These return codes are not error codes, just information.

Note. Due to the way this routine behaves, it is not correct to assume that a raster category value can be used to index the
color registers. The routines D_lookup_colors or D_color must be used for that purpose.

D_cell_draw_setup (top, bottom, left, right) prepare for raster graphic

 int top, bottom, left, right ;

The raster display subsystem establishes conversion parameters based on the screen extent defined by top, bottom, left, and
right, all of which are obtainable from D_get_screen_window for the current frame.

131

D_draw_cell (row, raster, colors) render a raster row

int row ;

CELL *raster ;

struct Colors *colors;

The row gives the map array row. The raster array provides the categories for each raster value in that row. The colors
structure must be the same as the one passed to D_set_colors.

This routine is called consecutively with the information necessary to draw a raster image from north to south. No rows can
be skipped. All screen pixel rows which represent the current map array row are rendered. The routine returns the map array
row which is needed to draw the next screen pixel row.

D_set_overlay_mode (flag) configure raster overlay mode

int flag ;

This routine determines if D_draw_cell draws in overlay mode (locations with category 0 are left untouched) or not (colored
with the color for category 0). Set flag to 1 (TRUE) for overlay mode; 0 (FALSE) otherwise.

D_raster (raster, n, repeat, colors) low level raster plotting

CELL *raster;

int n, repeat;

struct Colors *colors;

This low-level routine plots raster data. The raster array has n values. The raster is plotted repeat times, one row below the
other. The colors structure must be the same one passed to D_set_colors.

Note. This routine does not perform resampling or placement. D_draw_cell does resampling and placement and then calls
this routine to do the actual plotting.

Here is an example of how these routines are used to plot a raster map. The input parameters are the raster map name and
mapset and an overlay flag.

#include “gis.h”
plot_raster_map(name,mapset,overlay)

char *name, *mapset;
int overlay;

{
struct Colors colors;
CELL *raster;
int row, fd, top, bottom, left, right;

/* perform plotting setup */
D_setup(!overlay);
D_get_screen_window(&top, &bottom, &left, &right);
if (D_cell_draw_setup(&top, &bottom, &left, &right)) ERROR}

raster = G_allocate_cell_buf();

/* open raster map, read and set the colors */
if((fd = G_open_cell (name, mapset)) < 0) ERROR}
if(G_read_colors (name, mapset), &colors) < 0) ERROR}
D_set_colors(&colors);

/* plot */

132

D_set_overlay_mode(overlay);

for(row=0; row >= 0;) {
if (G_get_map_row(fd, raster, row) < 0) ERROR}
row = D_draw_cell(row, raster, &colors);

}
G_close_cell(fd);
G_free_colors(&colors);
free(raster);

}

16.7. Window Clipping
This section describes a routine which is quite useful in many settings. Window clipping is used for graphics display and
digitizing.

D_clip (s, n, w, e, x, y, c_x, c_y) clip coordinates to window

double s, n, w, e;

double *x1, *y1, *x2, *y2 ;

A line represented by the coordinates x1,y1 and x2,y2 is clipped to the window defined by s (south), n (north), w (west), and
e (east). Note that the following constraints must be true:

w <e
s <n

The x1 and x2 are values to be compared to w and e. The y1 and y2 are values to be compared to s and n.

The x1 and x2 values returned lie between w and e. The y1 and y2 values returned lie between s and n.

16.8. Pop-up Menus

D_popup (bcolor, tcolor, dcolor, top, left, size, options) pop-up menu

int bcolor ;

int tcolor ;

int dcolor ;

int left, top ;

int size ;

char *options[] ;

This routine provides a pop-up type menu on the graphics screen. The bcolor specifies the background color. The tcolor is
the text color. The dcolor specifies the color of the line used to divide the menu items. The top and left specify the placement
of the top left corner of the menu on the screen. 0,0 is at the bottom left of the screen, and 100,100 is at the top right. The size
of the text is given as a percentage of the vertical size of the screen. The options array is a NULL terminated array of
character strings. The first is a menu title and the rest are the menu options (i.e., options[0] is the menu title, and options[1],
options[2], etc., are the menu options). The last option must be the NULL pointer.

The coordinates of the bottom right of the menu are calculated based on the top left coordinates, the size, the number of
options, and the longest option text length. If necessary, the menu coordinates are adjusted to make sure the menu is on the
screen.

133

D_popup() does the following:

1 Current screen contents under the menu are saved.

2 Area is blanked with the background color and fringed with the text color.

3 Menu options are drawn using the current font.

4 User uses the mouse to choose the desired option.

5 Menu is erased and screen is restored with the original contents.

6 Number of the selected option is returned to the calling program.

16.9. Colors

D_reset_colors (colors) set colors in driver

struct Colors *colors;

Turns color information provided in the colors structure into color requests to the graphics driver. These colors are for raster
graphics, not lines or text. See 12.10.3 Raster Color Table for GIS Library routines which use this structure.

D_translate_color (name) color name to number
char *name ;

Takes a color name in ascii and returns the color number for that color. Returns 0 if color is not known. The color number
returned is for lines and text, not raster graphics.

16.10. Deleted Routines
The following routines have been deleted from the DISPLAY Library:

D_parse_command()
D_usage();

Replaced by G_parser and G_usage.
D_reset_colors()

Replaced by D_reset_color and D_set_colors.
D_draw_cell_row()
D_overlay_cell_row()

Replaced by D_draw_cell and D_set_overlay_mode.

16.11. Loading the Display Graphics Library
The library is loaded by specifying $(DISPLAYLIB), $(RASTERLIB) and $(GISLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(DISPLAYLIB)

OBJ = main.o sub1.o sub2.o

pgm: $(OBJ) $(DISPLAYLIB) $(RASTERLIB) $(GISLIB)
 $(CC) $(LDFLAGS) -o $@ $(OBJ) $(DISPLAYLIB) \
 $(RASTERLIB) $(GISLIB)
$(DISPLAYLIB): # in case the library changes
$(RASTERLIB): # in case the library changes
$(GISLIB): # in case the library changes

134

Note. This library uses routines in $(RASTERLIB). See 15 Raster Graphics Library for details on that library. Also
$(RASTERLIB) uses routines in $(GISLIB). See 12 GIS Library for details on that library. See 11 Compiling and Install-
ing GRASS Programs for a complete discussion of Gmakefiles.

16.12. Vector Graphics / Plotting Routines
This section describes routines in GISLIB and the DISPLAYLIB libraries to support plotting of vector data. The best source
for an example of how they are used is the GRASS d.vect module.

16.12.1. DISPLAYLIB routines

D_setup (clear) graphics frame setup

int clear ;

Performs a full setup for the current graphics frame: 1) Makes sure there is a current graphics frame (will create a full-screen
one, if not); 2) Sets the region coordinates so that the graphics frame and the active program region agree (may change active
program region to do this); and 3) performs graphic frame/region coordinate conversion initialization.

If clear is true, the frame is cleared (same as running d.erase.) Otherwise, it is not cleared.

D_set_clip_window (top, bottom, left, right) set clipping window

int top, bottom, left, right ;

Sets the clipping window to the pixel window that corresponds to the current database region. This is the default.

D_set_clip_window_to_map_window () set clipping window to map window

Sets the clipping window to the pixel window that corresponds to the current database region. This is the default.

D_cont_abs (x, y) line to x,y
int x, y ;

Draws a line from the current position to pixel location x,y. Any part of the line that falls outside the clipping window is not
drawn.

Note. The new position is x,y, ev en if it falls outside the clipping window. Returns 0 if the line was contained entirely in the
clipping window, 1 if the line had to be clipped to draw it.

D_cont_rel (x, y) line to x,y

int x, y ;

Equivalent to D_cont_abs(curx+x, cury+y) where curx,cury is the current pixel location.

D_move_abs (x, y) move to pixel

int x, y ;

Move without drawing to pixel location x,y, ev en if it falls outside the clipping window.

D_move_rel (x, y) move to pixel

int x, y ;

Equivalent to D_move_abs(curx+x, cury+y) where curx,cury is the current pixel location.

135

Chapter 17

Lock Library

17.1. Introduction
This library provides an advisory locking mechanism. It is based on the idea that a process will write a process id into a file
to create the lock, and subsequent processes will obey the lock if the file still exists and the process whose id is written in the
file is still running.

17.2. Lock Routine Synopses
lock_file (file, pid) create a lock

char *file;

int pid;

This routine decides if the lock can be set and, if so, sets the lock. If file does not exist, the lock is set by creating the file and
writing the pid (process id) into the file. If file exists, the lock may still be active, or it may have been abandoned. To
determine this, an integer is read out of the file. This integer is taken to be the process id for the process which created the
lock. If this process is still running, the lock is still active and the lock request is denied. Otherwise the lock is considered to
have been abandoned, and the lock is set by writing the pid into the file.

Return codes:

1 ok, lock request was successful
0 sorry, another process already has the file locked
-1 error. could not create the file
-2 error. could not read the file
-3 error. could not write the file

unlock_file (file) remove a lock
char *file;

This routine releases the lock by unlinking file. This routine does NOT check to see that the process unlocking the file is the
one which created the lock. The file is simply unlinked. Programs should of course unlock the lock if they created it. (Note,
however, that the mechanism correctly handles abandoned locks.)

Return codes:

1 ok. lock file was removed
0 ok. lock file was never there
-1 error. lock file remained after attempt to remove it.

17.3. Use and Limitations
It is worth noting that the process id used to lock the file does not have to be the process id of the process which actually
creates the lock. It could be the process id of a parent process. The GRASS start-up shells, for example, invoke an auxiliary
“locking” program that is told the file name and the process id to use. The start-up shells simply use a hidden file in the user’s
home directory as the lock file, and their own process id as the locking pid, but let the auxiliary program actually do the
locking (since the lock must be done by a program, not a shell script). The only consideration is that the parent process not
exit and abandon the lock.

Warning. Locking based on process ids requires that all processes which access the lock file run on the same cpu. It will not
work under a network environment since a process id alone (without some kind of host identifier) is not sufficient to identify
a process.

136

17.4. Loading the Lock Library
The library is loaded by specifying $(LOCKLIB) in the Gmakefile. The following example is a complete Gmakefile which
compiles code that uses this library:

Gmakefile for $(LOCKLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(LOCKLIB)
 $(CC) $(LDFLAGS) -o $@ $(OBJ) $(LOCKLIB)
$(LOCKLIB): # in case the library changes

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

137

Chapter 18

Rowio Library
18.1. Introduction
Sometimes it is necessary to process large files which contain data in a matrix format and keep more than one row of the data
in memory at a time. For example, suppose a program were required to look at five rows of data of input to produce one row
of output (neighborhood function). It would be necessary to allocate five memory buffers, read five rows of data into them,
and process the data in the five buffers. Then the next row of data would be read into the first buffer, overwriting the first row,
and the five buffers would again be processed, etc. This memory management complicates the programming somewhat and is
peripheral to the function being developed.

The Rowio Library routines handle this memory management. These routines need to know the number of rows of data that
are to be held in memory and how many bytes are in each row. They must be given a file descriptor open for reading. In order
to abstract the file i/o from the memory management, the programmer also supplies a subroutine which will be called to do
the actual reading of the file. The library routines efficiently see to it that the rows requested by the program are in memory.

Also, if the row buffers are to be written back to the file, there is a mechanism for handling this management as well.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix ro wio_. To avoid
name conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix H. Index to Rowio Library.

18.2. Rowio Routine Synopses
The routines in the Rowio Library are described below. They use a data structure called RO WIO which is defined in the
header file “rowio.h” that must be included in any code using these routines:

include “rowio.h”

ro wio_setup (r, fd, nrows, len, getrow, putrow) configure rowio structure

RO WIO *r;

int fd, nrows, len;

int (*getrow)();

int (*putrow)();

Rowio_setup() initializes the ROWIO structure r and allocates the required memory buffers. The file descriptor fd must be
open for reading. The number of rows to be held in memory is nrows. The length in bytes of each row is len. The routine
which will be called to read data from the file is getrow() and must be provided by the programmer. If the application
requires that the rows be written back into the file if changed, the file descriptor fd must be open for write as well, and the
programmer must provide a putrow() routine to write the data into the file. If no writing of the file is to occur, specify NULL
for putrow().

Return codes:

1 ok

-1 there is not enough memory for buffer allocation

The getrow() routine will be called as follows:

getrow (fd, buf, n, len)
int fd;
char *buf;
int n, len;

When called, getrow() should read data for row n from file descriptor fd into buf for len bytes. It should return 1 if the data
is read ok, 0 if not.

138

The putrow() routine will be called as follows:
putrow (fd, buf, n, len)

int fd;
char *buf;
int n, len;

When called, putrow() should write data for row n to file descriptor fd from buf for len bytes. It should return 1 if the data
is written ok, 0 if not.

char *

ro wio_get (r, n) read a row

RO WIO *r;

int n;

Rowio_get() returns a buffer which holds the data for row n from the file associated with ROWIO structure r. If the row
requested is not in memory, the getrow() routine specified in rowio_setup is called to read row n into memory and a pointer
to the memory buffer containing the row is returned. If the data currently in the buffer had been changed by rowio_put, the
putrow() routine specified in rowio_setup is called first to write the changed row to disk. If row n is already in memory, no
disk read is done. The pointer to the data is simply returned.

Return codes:

NULL n is negative, or

getrow() returned 0 (indicating an error condition).

!NULL pointer to buffer containing row n.

ro wio_forget (r, n) forget a row

RO WIO *r;

int n;

Rowio_forget() tells the routines that the next request for row n must be satisfied by reading the file, even if the row is in
memory.

For example, this routine should be called if the buffer returned by rowio_get is later modified directly without also writing
it to the file. See 18.3 Rowio Programming Considerations.

rowio_fileno (r) get file descriptor

RO WIO *r;

Rowio_fileno() returns the file descriptor associated with the ROWIO structure.

ro wio_release (r) free allocated memory

RO WIO *r;

Rowio_release() frees all the memory allocated for ROWIO structure r. It does not close the file descriptor associated with
the structure.

ro wio_put (r, buf, n) write a row

RO WIO *r;

char *buf;

int n;

139

Rowio_put() writes the buffer buf, which holds the data for row n, into the ROWIO structure r. If the row requested is
currently in memory, the buffer is simply copied into the structure and marked as having been changed. It will be written out
later. Otherwise it is written immediately. Note that when the row is finally written to disk, the putrow() routine specified
in rowio_setup is called to write row n to the file. ro wio_flush (r) force pending updates to disk RO WIO *r;

Rowio_flush() forces all rows modified by rowio_put to be written to the file. This routine must be called before closing the
file or releasing the rowio structure if rowio_put() has been called.

18.3. Rowio Programming Considerations
If the contents of the row buffer returned by rowio_get() are modified, the programmer must either write the modified buffer
back into the file or call rowio_forget(). If this is not done, the data for the row will not be correct if requested again. The
reason is that if the row is still in memory when it is requested a second time, the new data will be returned. If it is not in
memory, the file will be read to get the row and the old data will be returned. If the modified row data is written back into the
file, these routines will behave correctly and can be used to edit files. If it is not written back into the file, rowio_forget()
must be called to force the row to be read from the file when it is next requested.

Rowio_get() returns NULL if getrow() returns 0 (indicating an error reading the file), or if the row requested is less than 0.
The calling sequence for rowio_get() does not permit error codes to be returned. If error codes are needed, they can be
recorded by getrow() in global variables for the rest of the program to check.

18.4. Loading the Rowio Library
The library is loaded by specifying $(ROWIOLIB) in the Gmakefile. The following example is a complete Gmakefile which
compiles code that uses this library:

Gmakefile for $(ROWIOLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(ROWIOLIB)
 $(CC) $(LDFLAGS) -o $@ $(OBJ) $(ROWIOLIB)
$(ROWIOLIB): # in case the library changes

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

140

Chapter 19

Segment Library
19.1. Introduction
Large data files which contain data in a matrix format often need to be accessed in a nonsequential or random manner. This
requirement complicates the programming.

Methods for accessing the data are to:

(1) read the entire data file into memory and process the data as a two-dimensional matrix,

(2) perform direct access i/o to the data file for every data value to be accessed, or

(3) read only portions of the data file into memory as needed.

Method (1) greatly simplifies the programming effort since i/o is done once and data access is simple array referencing.
However, it has the disadvantage that large amounts of memory may be required to hold the data. The memory may not be
available, or if it is, system paging of the program may severely degrade performance. Method (2) is not much more compli-
cated to code and requires no significant amount of memory to hold the data. But the i/o involved will certainly degrade
performance. Method (3) is a mixture of (1) and (2). Memory requirements are fixed and data is read from the data file only
when not already in memory. Howev er the programming is more complex.

The routines provided in this library are an implementation of method (3). They are based on the idea that if the original
matrix were segmented or partitioned into smaller matrices these segments could be managed to reduce both the memory
required and the i/o. Data access along connected paths through the matrix, (i.e., moving up or down one row and left or right
one column) should benefit.

In most applications, the original data is not in the segmented format. The data must be transformed from the nonsegmented
format to the segmented format. This means reading the original data matrix row by row and writing each row to a new file
with the segmentation organization. This step corresponds to the i/o step of method (1).

Then data can be retrieved from the segment file through routines by specifying the row and column of the original matrix.
Behind the scenes, the data is paged into memory as needed and the requested data is returned to the caller.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix segment_. To
avoid name conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix I. Index to Segment Library.

19.2. Segment Routines
The routines in the Segment Library are described below, more or less in the order they would logically be used in a program.
They use a data structure called SEGMENT which is defined in the header file “segment.h” that must be included in any
code using these routines:

include “segment.h”

The first step is to create a file which is properly formatted for use by the Segment Library routines:

segment_format (fd, nrows, ncols, srows, scols, len) format a segment file

int fd, nrows, ncols, srows, scols, len;

The segmentation routines require a disk file to be used for paging segments in and out of memory. This routine formats the
file open for write on file descriptor fd for use as a segment file. A segment file must be formatted before it can be processed
by other segment routines. The configuration parameters nrows, ncols, srows, scols, and len are written to the beginning of
the segment file which is then filled with zeros.

The corresponding nonsegmented data matrix, which is to be transferred to the segment file, is nrows by ncols. The segment
file is to be formed of segments which are srows by scols. The data items have length len bytes. For example, if the data type
is int, len is sizeof(int).

141

Return codes are:

1 ok

-1 could not seek or write fd

-3 illegal configuration parameter(s).

The next step is to initialize a SEGMENT structure to be associated with a segment file formatted by segment_format.

segment_init (seg, fd, nsegs) initialize segment structure
SEGMENT *seg;
int fd, nsegs;

Initializes the seg structure. The file on fd is a segment file created by segment_format and must be open for reading and
writing. The segment file configuration parameters nrows, ncols, srows, scols, and len, as written to the file by segment_format,
are read from the file and stored in the seg structure. Nsegs specifies the number of segments that will be retained in memory.
The minimum value allowed is 1.

Note. The size of a segment is scols*srows*len plus a few bytes for managing each segment.

Return codes are: 1 if ok; else -1 could not seek or read segment file, or -2 out of memory.

Then data can be written from another file to the segment file row by row:

segment_put_row (seg, buf, row) write row to segment file

SEGMENT *seg;

char *buf;

int row;

Transfers nonsegmented matrix data, row by row, into a segment file. Seg is the segment structure that was configured from
a call to segment_init. Buf should contain ncols*len bytes of data to be transferred to the segment file. Row specifies the
row from the data matrix being transferred.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

Then data can be read or written to the segment file randomly:

segment_get (seg, value, row, col) get value from segment file

SEGMENT *seg;

char *value;

int row, col;

Provides random read access to the segmented data. It gets len bytes of data into value from the segment file seg for the
corresponding row and col in the original data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

segment_put (seg, value, row, col) put value to segment file
SEGMENT *seg;
char *value;
int row, col;

Provides random write access to the segmented data. It copies len bytes of data from value into the segment structure seg for
the corresponding row and col in the original data matrix.

The data is not written to disk immediately. It is stored in a memory segment until the segment routines decide to page the
segment to disk.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

142

After random reading and writing is finished, the pending updates must be flushed to disk:

segment_flush (seg) flush pending updates to disk

SEGMENT *seg;

Forces all pending updates generated by segment_put to be written to the segment file seg. Must be called after the final
segment_put() to force all pending updates to disk. Must also be called before the first call to segment_get_row.

Now the data in segment file can be read row by row and transferred to a normal sequential data file:

segment_get_row (seg, buf, row) read row from segment file

SEGMENT *seg;

char *buf;

int row;

Transfers data from a segment file, row by row, into memory (which can then be written to a regular matrix file). Seg is the
segment structure that was configured from a call to segment_init. Buf will be filled with ncols*len bytes of data corre-
sponding to the row in the data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

Finally, memory allocated in the SEGMENT structure is freed:

segment_release (seg) free allocated memory

SEGMENT *seg;

Releases the allocated memory associated with the segment file seg. Does not close the file. Does not flush the data which
may be pending from previous segment_put calls.

19.3. How to Use the Library Routines
The following should provide the programmer with a good idea of how to use the Segment Library routines. The examples
assume that the data is integer. The first step is the creation and formatting of a segment file. A file is created, formatted and
then closed:

fd = creat (file,0666);

segment_format (fd, nrows, ncols, srows, scols, sizeof(int));

close(fd)

The next step is the conversion of the nonsegmented matrix data into segment file format. The segment file is reopened for
read and write, initialized, and then data read row by row from the original data file and put into the segment file:

int buf[NCOLS];

SEGMENT seg;

fd = open (file, 2); segment_init (&seg, fd, nseg)

for (row = 0; row < nrows; row++)

{
<code to get original matrix data for row into buf>
segment_put_row (&seg, buf, row);

}

143

Of course if the intention is only to add new values rather than update existing values, the step which transfers data from the
original matrix to the segment file, using segment_put_row(), could be omitted, since segment_format will fill the segment
file with zeros.

The data can now be accessed directly using segment_get. For example, to get the value at a given row and column:

int value;
SEGMENT seg;
segment_get (&seg, &value, row, col);

Similarly segment_put can be used to change data values in the segment file:

int value;
SEGMENT seg;
value = 10;
segment_put (&seg, &value, row, col);

Warning. It is an easy mistake to pass a value directly to segment_put(). The following should be avoided:

segment_put (&seg, 10, row, col); /* this will not work */

Once the random access processing is complete, the data would be extracted from the segment file and written to a nonsegmented
matrix data file as follows:

segment_flush (&seg);

for (row = 0; row < nrows; row++)

{
segment_get_row (&seg, buf, row);
<code to put buf into a matrix data file for row>

}

Finally, the memory allocated for use by the segment routines would be released and the file closed:

segment_release (&seg);

close (fd);

Note. The Segment Library does not know the name of the segment file. It does not attempt to remove the file. If the file is
only temporary, the programmer should remove the file after closing it.

19.4. Loading the Segment Library
The library is loaded by specifying $(SEGMENTLIB) in the Gmakefile. The following example is a complete Gmakefile
which compiles code that uses this library:

Gmakefile for $(SEGMENTLIB)

OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(SEGMENTLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(SEGMENTLIB)
$(SEGMENTLIB): # in case the library changes

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

144

Chapter 20

Vask Library
20.1. Introduction
The Vask Library (visual-ask) provides an easy means to communicate with a user one page at a time. That is, a page of text
can be provided to the user with information and question prompts. The user is allowed to move the cursor from prompt to
prompt answering questions in any desired order. Users’ answers are confined to the programmer-specified screen locations.

This interface is used in many interactive GRASS programs. For the user, the Vask Library provides a very consistent and
simple interface. It is also fairly simple and easy for the programmer to use.

Note. All routines and global variables in this library, documented or undocumented, start with the prefix V_. To avoid name
conflicts, programmers should not create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in 25.4 Appendix J. Index to Vask Library.

20.2. Vask Routine Synopses
The routines in the Vask Library are described below, more or less in the order they would logically be used in a program.
The Vask Library maintains a private data space for recording the screen description. With the exception of V_call(), which
does all the screen painting and user interaction, vask routines only modify the screen description and do not update the
screen itself.

V_clear () initialize screen description
This routine initializes the screen description information, and must be called before each new screen layout description.

V_line (num, text) add line of text to screen

int num;

char *text;

This routine is used to place lines of text on the screen. Row is an integer value of 0-22 specifying the row on the screen
where the text is placed. The top row on the screen is row 0.

Warning. V_line() does not copy the text to the screen description. It only saves the text address. This implies that each call
to V_line() must use a different text buffer.

V_const (value, type, row, col, len) define screen constant

V_ques (value, type, row, col, len) define screen question

Ctype *value; (Ctype is one of int, long, float, double, or char)

char type;

int row, col, len;

These two calls use the same syntax. V_const() and V_ques() specify that the contents of memory at the address of value
are to be displayed on the screen at location row, col for len characters. V_ques() further specifies that this screen location
is a prompt field. The user will be allowed to change the field on the screen and thus change the value itself. V_const() does
not define a prompt field, and thus the user will not be able to change these values.

Value is a pointer to an int, long, float, double, or char string. Type specifies what type value points to: ’i’ (int), ’l’ (long),
’f’ (float), ’d’ (double), or ’s’ (character string). Row is an integer value of 0-22 specifying the row on the screen where the

145

value is placed. The top row on the screen is row 0. Col is an integer value of 0-79 specifying the column on the screen where
the value is placed. The leftmost column on the screen is column 0. Len specifies the number of columns that the value will
use.

Note that the size of a character array passed to V_ques() must be at least one byte longer than the length of the prompt field
to allow for NULL termination. Currently, you are limited to 20 constants and 80 variables.

Warning. These routines store the address of value and not the value itself. This implies that different variables must be
used for different calls. Programmers will instinctively use different variables with V_ques(), but it is a stumbling block for
V_const(). Also, the programmer must initialize value prior to calling these routines.

V_float_accuracy (num) set number of decimal places

int num;

V_float_accuracy() defines the number of decimal places in which floats and doubles are displayed or accepted. Num is an
integer value defining the number of decimal places to be used. This routine affects subsequent calls to V_const() and
V_ques(). Various inputs or displayed constants can be represented with different numbers of decimal places within the
same screen display by making different calls to V_float_accuracy() before calls to V_ques() or V_const(). V_clear()
resets the number of decimal places to the default (which is unlimited).

V_call () interact with the user

V_call() clears the screen and writes the text and data values specified by V_line(), V_ques() and V_const() to the screen.
It interfaces with the user, collecting user responses in the V_ques() fields until the user is satisfied. A message is automati-
cally supplied on line number 23, explaining to the user to enter an ESC when all inputs have been supplied as desired.
V_call() ends when the user hits ESC and returns a value of 1 (but see V_intrpt_ok() below). No error checking is done by
V_call(). Instead, all variables used in V_ques() calls must be checked upon return from V_call(). If the user has supplied
inappropriate information, the user can be informed, and the input prompted for again by further calls to V_call().

V_intrpt_ok () allow ctrl-c

V_call() normally only allows the ESC character to end the interactive input session. Sometimes it is desirable to allow the
user to cancel the session. To provide this alternate means of exit, the programmer can call V_intrpt_ok() before V_call().
This allows the user to enter Ctrl-C, which causes V_call() to return a value of 0 instead of 1.

A message is automatically supplied to the user on line 23 saying to use Ctrl-C to cancel the input session. The normal
message accompanying V_call() is moved up to line 22.

Note. When V_intrpt_ok() is called, the programmer must limit the use of V_line(), V_ques(), and V_const() to lines 0-
21.

V_intrpt_msg (text) change ctrl-c message
char *text;

A call to V_intrpt_msg() changes the default V_intrpt_ok() message from (OR <Ctrl-C> TO CANCEL) to (OR <Ctrl-C>
TO msg). The message is (re)set to the default by V_clear().

20.3. An Example Program
Following is the code for a simple program which will prompt the user to enter an integer, a floating point number, and a
character string.

define LEN 15
main()
{

int i ; /* the variables */

146

float f ;
char s[LEN] ;
i=0; /*initialize the variables */
f = 0.0 ;
*s = 0 ;
V_clear() ; /* clear vask info */
V_line(5, “ Enter an Integer “) ; /* the text */
V_line(7, “ Enter a Decimal “) ;
V_line(9, “ Enter a character string “) ;
V_ques (&i, ’i’, 5, 30, 5) ;/* the prompt fields */
V_ques (&f, ’f’, 7, 30, 5) ;
V_ques (s, ’s’, 9, 30, LEN - 1) ;
V_intrpt_ok(); /* allow ctrl-c */
if (!V_call()) /* display and get user input */
exit(1); /* exit if ctrl-c */
printf (“%d %f %s\n”, i, f, s) ; /* ESC, so print results */
exit(0);

}

The user is presented with the following screen:

Enter an Integer 0 ____
Enter a Decimal 0.00 _
Enter a character string _________

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE (OR <Ctrl-C> TO CANCEL)

The user has several options.

<CR> moves the cursor to the next prompt field.

CTRL-K moves the cursor to the previous prompt field.

CTRL-H moves the cursor backward nondestructively within the field.

CTRL-L moves the cursor forward nondestructively within the field. CTRL-A writes a copy of the screen to a file
named visual_ask in the user’s home directory.

ESC returns control to the calling program with a return value of 1.

CTRL-C returns control to the calling program with a return value of 0. Displayable ascii characters typed by the
user are accepted and displayed. Control characters (other than those with special meaning listed above) are ig-
nored.

20.4. Loading the Vask Library
Compilations must specify the vask, curses, and termcap libraries. The library is loaded by specifying $(VASK) and
$(VASKLIB) in the Gmakefile. The following example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(VASK)
OBJ = main.o sub1.o sub2.o
pgm: $(OBJ) $(VASKLIB)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(VASK)
$(VASKLIB): # in case the library changes

Note. The target pgm depends on the object files $(OBJ) and the Vask Library $(VASKLIB). This is done so that modifica-
tions to any of the $(OBJ) files or to the $(VASKLIB) itself will force program reloading. However, the compile rule speci-

147

fies $(OBJ) and $(VASK), rather than $(OBJ) and $(VASKLIB). This is because $(VASK) specifies both the UNIX curses
and termcap libraries as well as $(VASKLIB).

See 11 Compiling and Installing GRASS Programs for a complete discussion of Gmakefiles.

20.5. Programming Considerations
The order of movement from prompt field to prompt field is dependent on the ordering of calls to V_ques(), not on the line
numbers used within each call. Information cannot be entered beyond the edges of the prompt fields. Thus, the user response
is limited by the number of spaces in the prompt field provided in the call to V_ques(). Some interpretation of input occurs
during the interactive information gathering session. When the user enters <CR> to move to the next prompt field, the
contents of the current field are read and rewritten according to the value type associated with the field. For example,
nonnumeric responses (e.g., “abc”) in an integer field will get turned to a 0, and floating point numbers will be truncated
(e.g., 54.87 will become 54).

No error checking (other than matching input with variable type for that input field) is done by V_call(). This must be done,
by the programmer, upon return from V_call(). Calls to V_line(), V_ques(), and V_const() store only pointers, not
contents of memory. At the time of the call to V_call(), the contents of memory at these addresses are copied into the
appropriate places of the screen description. Care should be taken to use distinct pointers for different fields and lines of
text. For example, the following mistake should be avoided:

char
text[100];
V_clear();
sprintf(text,” Welcome to GRASS “);
V_line(3,text);
sprintf(text,” which is a product of the US Army CERL “);
V_line(5,text);
V_call();

since this results in the following (unintended) screen:

which is a product of the US Army CERL
which is a product of the US Army CERL

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE

(OR <Ctrl-C> TO CANCEL)

Warning. Due to a problem in a routine within the curses library, the Vask routines use the curses library in a somewhat
unorthodox way. This avoided the problem within curses, but means that the programmer cannot mix the use of the Vask
Library with direct calls to curses routines. Any program using the Vask Library should not call curses library routines
directly.

148

Chapter 21

Digitizer/Mouse/Trackball Files (.dgt)

The following is derived from the manual for Line Trace Plus (LTPlus) by John Dabritz and the Forest Service. The code for
the digitizer drivers was taken from LTPlus and modified. The ’additions’ file describes what has been changed from the
original LTPlus version. Note that LTPlus supports mice and trackballs as well as digitizers. These can be ignored for v.digit,
and herein, “digitizer” will be used to correspond to digitizers, mice, and trackballs.

This chapter is relevant for the GRASS v4.2 version of v.digit only. The GRASS v4.0 version of v.digit is now named
v.digit2 and is included in the GRASS v4.2 release. See 22 Writing a Digitizer Driver for information on writing a digitizer
for v.digit2.

21.1. Rules for Digitizer Configuration Files
The following are rules and restrictions for creating .dgt files.

1. No line may exceed 95 characters in length.
2. In a line, all characters following (and including) a pound sign (#) are considered comments (ignored). To put a pound

sign into a string not to be ignored, use a \035. Any ascii character can be specified in this way: a backslash followed by
a 3-digit (ascii decimal) number specifying the ascii decimal value of the character.

3. All other non-blank characters must be within brackets {} OR be one of the following (which are followed by brackets):
setup
startrun
startpoint
startquery
stop
query
format

These represent the groups of information used to initiate, gather, and stop input from a graphics input device (digitizer,
mouse, track-ball ect.). Only one (left or right) bracket may be on a single line, although text and brackets may share a line.
See #?secton|digitizer.file.commands

4. Limits:
a) The file can have no more than 100 non-blank, non-comment lines.
b) Other limits are listed with their data type, below.

5. The legal lines within brackets depend on the group to which the brackets belong. ALL DATA LINES ARE DEPEN-
DENT ON THE PARTICULAR DEVICE. YOU MUST REFER TO THE TECHNICAL REFERENCE MANUAL
FOR THE PARTICULAR DEVICE (mouse/digitizer/track-ball) in order to determine which parameters and which
values need to be used. The groups (setup, startrun, startpoint, startquery, stop, query , format) may be in any order.
Within the groups: startrun, startpoint, startquery, query, and stop the order of command lines is important. These are
the legal line formats for each grouping:

21.2. Digitizer Configuration File Commands
The following is an in-depth description of each command available in the .dgt digitizer files.

21.2.1. Setup

This data is used to setup the communication link with the digitizer and is used during interpretation of the digitizer data.

149

21.2.1.1.Serial Line Characteristics

baud = n This line is optional, default = 9600 if not specified. If specified, n must be one of : 300, 600, 1200, 1800, 2400,
4800 9600, or 19200.

parity = str str must be “odd”, “even”, or “none”. This item is optional, and defaults to none if not specified.

data_bits = n The number of data bits used (does NOT include parity bits, if any). Choices = 5,6,7,8 (default = 8)

stop_bits = n The number of stop bits used on the serial line. Choices are 1, or 2. Optional, default = 1.

buttons = n Number of buttons on digitizer cursor. This entry lets v.digit know if digitizer keys are available for input.
Default is 0, so an entry must be made if the digitizer cursor is to be used for input. If the value of buttons is less
than 5, keyboard keys will also be used for input.

buttonstart = n Number of the first key on the digitizer cursor. Usually 0 or 1. Default is 0. This is strictly for comunicating
with the user. If you have arrow keys on your puck, you can set buttonstart to whatever you want.

buttonoffset = n Difference between 1 and the value sent by the lowest digitizer button. In other words, if the digitizer keys
sent the values 0, 1, ..., n, buttonoffset would equal one, if the button output already starts with one, buttonoffset
would be zero (the default value). Although these are the two most common cases, it is legal for buttonoffset to be
any integer value. For instance if your keys for some reason output the values 16-32, it would be legal to use the
value -15 as the buttonoffset.

footswitch = 0 or 1 Does the digitizer have a footswitch? Zero for no, one for yes.
digname = string Name of the digitizer.
description = string One line description of digitizer, format, etc.
button_up_char = c Character that indicates that no button is pressed. Only appropriate if format is ascii and includes a

button press byte.

21.2.1.2.Data Interpretation Characteristics

debounce = d [r] These values control the delay and repeat rate for a digitizer or mouse button that is held down (who says
you can’t hold a good button down!) The first value (delay) specifies the number of continuous reports with the
same button press which may be received before it is taken as a second button press. The second value, separated by
a space, is the repeat rate, which specifies the number of continuous reports between further reports received which
will be taken as subsequent button presses. The second value (repeat rate) is optional (default is 1/3 of the first
value). A O for the first value indicates an infinite delay. For this value indicates an indefinite delay. For this value,
only 1 key press will be taken no matter how long a button is held down. If no debounce values are listed, the
default of 0s will be used.

units_per_inch = n Helps to set sensitivity (on absolute type devices see next item below) & map-inch size. dflt=1000. Not
used for relative type devices (mice), see below.

coordinates = str str must be ’absolute’ or ’relative’, dflt=absolute. In general, mouse/trackball devices are relative, and
digitizers coordinates are absolute.

sign_type = aaa This indicates the sign type for binary formats: none (all +) (default for absolute crds). 0negative (o=neg,
used for some abs coords). 1negative (1=neg, used for some abs coords). 2s-complement (default for relative coords).

Note: for binary formats the sign bit should be coded as highest bit number for a coordinate.

Note: for ascii formats, minus (-) sign is expected from the raw device to indicate a negative number.

x_positive = dd This indicates the direction of x-positive coordinates. dd is a sting which may have the value right or left. The
default is right. All digitizers and mice have x-positive to the right as of this writing.

y_positive = dd This indicates the direction of y-positive coordinates. dd is a string which may have the value up or down.
The default is up. The microsoft mouse is a digitizing device which has y-positive coordinates to indicate a down-
ward movement.

digcursor = fname Specifies the cursor file to be used while this digitizer is in use with LTPlus program. The digcursor file
defines which command each digitizer button generates. v.digit does not need a cursor file, and ignores this line.

Note: The order of items is unimportant within the setup group.

150

21.2.1.3.Example of a Setup

setup

{
digname = Calcomp
description = Calcomp digitizer, ascii format 12
buttons = 16 # number of buttons on digitizer
buttonstart = 0 # number buttons start with
buttonoffset = 1 # offset to get buttons 1-15
baud = 9600
units_per_inch = 1000

}

21.2.2. Startrun, Startpoint, Startquery, Stop, Query

All of these allow the same operations, but are used at different times when communicating with the digitizer/mouse. The
START groupings are used to initialize the digitizer each time communication is switched to that mode. The QUERY
grouping is used when (and if) the digitizer is queried/prompted to send data information. The STOP grouping is used to
stop digitizer output. All of these groupings are optional but at least one start group must be included (to use the file with
v.digit, the startquery group must be included). If the digitizer is configured by default or switch settings to output data in the
desired form of a certain mode, it is desirable to include that start group anyway, with some innocuous action (such as
sending a carriage return) as the only action. If a start group is not included for a given mode, the program assumes that the
digitizer is unable to operate in that mode.

There may be no more than 40 operations within each start group or the stop group. There may be no more than 10
operations in the query group.

21.2.2.1. Operations

send = aaaa This allows the sending of any ascii string to the digitizer (at the current baud rate and parity).

read = n This tells the program to read n bytes from the digitizer before trying to read again (gives up trying to read after 1
second). This is for reading digitizer prompts during start & stop groups and is NOT used for querying the digi-
tizer, unless a non-data string is to be read (like a prompt character).

wait = n wait n seconds (decimal seconds allowed) before next

communication with the digitizer. Many computers are quicker than digitizers and need to allow time for the digitizer to
change baud rate before resuming communication. Maximum resolution for wait is 0.001 second.

baud = n This allows changing of baud rate which was set during setup and is normally not used otherwise. If only 1 baud
rate is used, then it is put in the setup group only. This is the normal case for most digitizers.

21.2.2.2. Notes.

Control, extention, space, and all other characters can be specified in sent strings by using the backslash followed by the
ascii decimal value to be sent (up to 3 digits). Example: send=/027 (indicates the escape character).

The lines/commands communicating with the digitizer will be executed in the SAME ORDER as they are in the start/stop/
query grouping. Order is very important. Wait commands may be necessary to give the digitizer time to execute the command
sent. Wait commands may need to be added/changed when the main programs is run on a faster cpu (in order to give the
digitizer enough time to keep up). A maximum of 40 non-comment lines can be in a start, stop, or query group. All
characters to be sent must be specified, including carriage return (\013) and linefeed (\010).

Each time a QUERY group is executed, a 0.001 second wait is done automatically after all query group commands. This
allows time for the graphics input device to send a packet of information before the serail line is read by the program.
v.digit requires that a STARTQUERY group exists.

151

21.2.2.3. Example of Start Groupings

startrun

{
send = \027%R
baud = 2400
wait = 0.6
read = 3
wait = 0.1
send = \027%S

}
startpoint

{
send = \027%ˆ12\013 # set output format to format 12
send = \027%P\013 # set to run mode

}
startquery

{
send = \027%ˆ12\013 # set output format to format 12
send = \027%R\013 # set to run mode
send = \027%Q!\013 # set prompt character to ’!’ and

put in prompt mode
}

21.2.2.4. Example of a Query Grouping

query

{
send = !\013 # send prompt

}

21.2.2.5. Example of a Stop Grouping
stop
{ send = \027%K
wait = 0.1
send = \027%*
}

21.2.3. Format

This data is used each time a packet of information from the digitizer is interpreted. This group must be one of 2 types; ascii
or binary. The digitizer file MUST contain a format group (either ascii or binary).

Ascii format groups have only 1 line:

ascii = format_string

Binary format groups have one line for each byte in the form:

byteN = format_string Where N is the byte number, (1 or greater) or byte No = format_string (similar to above for
OPTIONAL bytes). Note. The program assumes the optional bytes containing ONLY button press information (no
x or y information).

The legal format strings depend on the type (ascii or byteN).

152

21.2.3.1. ASCII format strings

ASCII format strings have these characteristics:

1. There are no imbedded blanks.
2. Legal characters are:

x denotes 1 character of the x-coordinate value (sign included).

y denotes 1 character of the y-coordinate value (sign included).

b denotes 1 character of button information.
p denotes 1 character of button press information (up or down).
, denotes the comma character (used to sync data if present).
c denotes a carriage return (optionally specified)
l denotes a line-feed (optionally specified)
? denotes any other character of information (including blanks).

21.2.3.2. Notes

The sign (+ or -) should be coded as part of the x or y value. The specifications of the carriage-return and linefeed are totally
optional. They will be ignored whether they are specified or not. Their only use is to separate one ascii grouping of incoming
data from another. Any combination of carriage-returns and/or linefeeds will serve this purpose in any case os ascii format
use.

21.2.3.3. Example of ASCII Format Grouping

format

{
ascii =?xxxxx,yyyyy,??bcl

}

21.2.3.4. Binary Format String

Binary format strings have these characteristics.

0. byteNo form is used only for bytes which are sometimes, but not always sent by the digitizing devices. These
byte(s) must be at the end of the grouping/packet. For example, the Logitech Mouseman sends an optional 4th bytes
only when the middle button is pressed. Very few digitizing devices use optional bytes.

1. 8 bits are specified with at least 1 blank between bit groupings, even f fewer bits are used. Fill the left (high) bits
with ? if necessary.

2. Legal characters are:
xN denotes bit N of the x-coordinate value (low-order bit is 0, maximum bit allowed is 30) (include sign bit as
highest bit used)

yN denotes bit N of the y-coordinate value (low-order bit is 0, maximum bit allowed is 30) (include sign bit as
highest bit used)

bN denotes bit N of button press value (low-order bit is 0, maximum bit allowed is 7).

p denotes button press bit (will be 1 if button is pressed, 0 otherwise).

0 denotes bit is always zero (used for sync bit).

1 denotes bit is always one (used for sync bit).

? denoted any other information (bit not used).

153

21.2.3.5.Notes

There cannot be more than 100 lines of byten = in the format group.

Sign bits (if any) should be coded as the highest bit number for a given coordinate. Parity bits (if in the lowest 8 bits), and
fill bits (if fewer than 8 bits used) should be coded as ?. No bits above the lowest 8 should be specified ar all (sometimes
there is a 9th parity bit).

0s and 1s are used for syncing the input, and should all occur in the same bit column.

21.2.3.6.Examples of a Binary Format Grouping

Example with odd or even parity and 7 data bits.

format

{
byte1 = ? 1 ? ? ? ? ? ?
byte2 = ? 0 ? b4 b3 b2 b1 b0
byte3 = ? 0 x5 x4 x3 x2 x2 x0
byte4 = ? 0 x11 x10 x9 x8 x7 x6
byte5 = ? 0 x16 x17 x15 x14 x13 x12
byte6 = ? 0 y5 y4 y3 y2 y1 y0
byte7 = ? 0 y11 y10 y9 y8 y7 y6
byte8 = ? 0 y16 y17 y15 y14 y13 y12
}

or
Example with 8 data bits (with or without parity.)

format

{
byte1 = 1 p b3 b2 b1 b0 x15 x14
byte2 = 0 x13 x12 x11 x10 x9 x8 x7
byte3 = 0 x6 x5 x4 x3 x2 x1 x0
byte4 = 0 ? ? ? x16 y16 y15 y14
byte5 = 0 y13 y12 y11 y10 y9 y8 y7
byte6 = 0 y6 y5 y4 y3 y2 y1 y0
}

21.3. Examples of Complete Files
The following are complete examples of digitizer files.

21.3.1. Example 1

setup

{
digname = Calcomp
description = Calcomp digitizer, ascii format 5
buttonoffset = 1
buttons = 16
buttonstart = 0
baud = 9600
units_per_inch = 1000

}

154

startrun
{

send = \027%ˆ5\013 # set to format 5
send = \027%R\013

}
startpoint

{
send = \027%ˆ5\013 # set to format 5
send = \027%P\013

}
startquery

{
send = \027%ˆ5\013 # set to format 5
send = \027%R\013
send = \027%Q!\013

}
query

{
send = !\013

}
stop

{
send = \027%H\013

}
format

{
ascii = xxxxx,yyyyy,??b

}

21.3.2. Example 2
setup
{

digname = Altek

description = altek digitizer, model AC30, binary output format 8

buttonoffset = 1 # button output starts at 0, we want 1
buttonstart = 0 # first button is numbered 0
buttons = 16 # number of buttons is 16
baud = 9600
parity = none
stop_bits = 1
sign_type = none
units_per_inch = 1000
coordinates = absolute
sign_type = none

}
startrun

{
send=S2\13 # set to run mode
send=F8\13 # set output format to 8
send=R6\13 # enter rate mode 6

}
startpoint

{
send = P\013 # set to point mode
send = F8\013 # set output format to 8

}
startquery

{
send = S2\013 # altek has no specific prompt mode, but may be

155

queried at any time, so set to run mode
send = F8\013 # set output format to 8

}
query

{
send = V\013 # request data

}
stop
{

send = \027\013 # reset

}
format

{
byte1 = 1 p b3 b2 b1 b0 x15 x14
byte2 = 0 x13 x12 x11 x10 x9 x8 x7
byte3 = 0 x6 x5 x4 x3 x2 x1 x0
byte4 = 0 ? ? ? x16 y16 y15 y14
byte5 = 0 y13 y12 y11 y10 y9 y8 y7
byte6 = 0 y6 y5 y4 y3 y2 y1 y0

}

21.4. Digitizer File Naming Conventions
The naming conventions for digitizers driver files is:

manufacturer name or abbreviation + model number of digitizer + output format the digitizer is using + _ + number
of keys on puck

For example, an Altek model 30 digitizer using format 8 with a 16 button puck would be:

al + 30 + f8 + _ + 16

Put it together and you have —> al30f8_16
You can optionally stick a .dgt extention on the end of the file name, e.g., al30f8_16.dgt This is by no means required, but
its a clear indicator as to the use of the digitizer file which helps everyone in the long run. Test your files thoroughly. When
it works, tell other users about your file. This helps everyone by reducing duplication of effort.

156

Chapter 22

Writing a Digitizer Driver

22.1. Introduction
This chapter is relevant only for v.digit2. For more information on configuration files for the GRASS v4.2 v.digit, and an
explanation of v.digit and v.digit2,see 21 Digitizer/Mouse/Trackball Files (.dgt).

A digitizer device driver consists of a library of device-dependent functions that are linked into digitizer programs. This
chapter describes those functions that are needed to create a digitizer device driver compatible with GRASS map develop-
ment software.

Section 22.2 Writing the Digitizer Device Driver explains how digitizer drivers are written, while section 22.3 Discussion of
the Finer Points (Hints) describes problems and pitfalls encountered during the development of the Altek driver.

22.2. Writing the Digitizer Device Driver
Source code for the digitizer drivers is kept in

$GISBASE/src/mapdev/digitizers
Separate subdirectories contain the individual drivers. When a new driver is written, it should be placed here in a new
subdirectory.
It is helpful to examine the source code for existing drivers located here, and to attend a demonstration of the GRASS
digitizing program v.digit, before developing a new driver.

22.2.1. Functions that must be Written
This section describes the device-dependent library functions that must be written. Each of these functions must be present
in the library. Function descriptions are organized by file name. (The file names are those used by current GRASS digitizer
drivers. File names are printed in bold, along the left-hand margin of the page.) These files and functions can be copied from
one of the existing digitizer driver libraries and altered to suit the needs of a particular driver.

Note. Although it is strongly recommended that the programmer use the file names listed below (for reasons set forth in
22.2.3 Compiling the Device Driver), other files names may be used instead.

dig_menu.h

This file contains the menu that is displayed while digitizing. The menu should indicate the purpose of the buttons on the
cursor for the particular digitizer. The menu is stored in

dig_menu:

char *dig_menu[] ;

An example of how the Altek driver uses this function to create a menu is given below:

define dig_menu_lines 16
char *dig_menu[] = {
“ GRASS-DIGIT Version 3.0 Digitizing menu “,
“___“,
“ ALTEK digitizer AMOUNT DIGITIZED “,
“ Cursor keys: # Lines: “,
“ <0> digitize point # Area edges: “,
“ <1> quit digitizing “,
“ <2> update monitor “,
“ <3> toggle point/stream mode Total points: “,
“__“,

157

“ CURRENT DIGITIZER PARAMS. “,
“ “,
“ “
“ MODE TYPE “,
“ point line “,
“ stream area edge “,
“ “
};

Note. The menu must be exactly as it appears here, except that the text in bold may be replaced by the appropriate text for the
digitizer.

dig_curses.c

This file only contains # includes. It is used to set up the digitizing menu in the “dig_menu.h” file. This file must look like
this:

#include <curses.h>
include “dig_menu.h”
include “../../digit/digit.h”
include “../../digit/menu.h”
include “../../libes/head.h”
include “../../digit/curses.c”

setup_driver.c

D_setup_driver (device)

char *device ;

This function opens the device (which is a tty port) and initializes the digitizer.

Note. This function should not set the origin. The origin is set later by the function D_setup_origin.

dig_dev.c

D_get_scale(scale)

float *scale ;

This function sets scale to the digitizer resolution in units of lines per inch. For example, on a digitizer having a resolution
of 1000 lines per inch, scale would be set to .001.

coll_pts.c

include “digit.h”
include “globals.h”
collect_points (mode, type, np, x, y)

int mode, type ;
int *np ;
double **x, **y ;

This routine is called to collect points that represent a single vector (or arc) from the digitizer.

The points should be collected into static arrays or dynamically allocated arrays, transformed from digitizer coordinates to
database coordinates using transform_a_into_b, and plotted on the graphics monitor using plot_points. Then x and y are set
to point to these arrays, and np set to the number of points collected.

158

The digitizing mode may be either STREAM or POINT: STREAM indicates that the digitizer should collect a continuous
stream of points; POINT indicates that the digitizer should collect points under user control (i.e., each time the user presses
a button, the foot-switch, or a key on the keyboard). The collect_points () function can be written to allow interactive
toggling between the two modes during a single call.

The type is set to AREA when the vector to be collected is an area edge, and to LINE when it is is a linear feature. The type
is of no interest to collect_points () itself, but is passed to the function plot_points, which draws lines on the graphics
monitor.

This function should return 1 if digitizing in STREAM mode occurred (i.e., either because mode was initially STREAM, or
because the user changed to STREAM mode), and 0 otherwise.

Note. This routine is responsible for plotting the vector on the graphics monitor, but it should do it responsibly. This means
that while digitizing in POINT mode, the line-segments should be plotted immediately; while digitizing in STREAM mode,
the points should be plotted only when the digitizing is finished, or when the user toggles to POINT mode.

Note. If the cursor has buttons, they can be used to change the digitizing mode as well as end the digitizing. If the digitizer
has a foot-switch instead of buttons, the foot-switch should be used to end the digitizing (toggling modes would not be
supported in this case). If the digitizer has neither buttons nor a foot-switch, then the keyboard must be used, even in
STREAM mode. (See GeoGraphics driver for code that polls the keyboard.)

interface.c

This file contains a number of functions. The following functions return information about digitizer capabilities:

D_cursor_buttons()

If the digitizer cursor buttons are to be used by the digitizing programs, there must be at least five buttons. This
function returns 1 if the cursor has five or more buttons; otherwise, it returns 0.

D_foot_switch()

This function returns 1 if there is a usable foot-switch. It returns 0 if the digitizer has no foot-switch.

Note. If there are five or more buttons on the cursor, the value returned by D_foot_switch () is ignored (i.e., it is assumed that
there is no foot-switch). See D_cursor_buttons.

D_start_button()

This function tells the driver how the cursor buttons are labeled (i.e., the labels that the user sees on the buttons).
If the first button is labeled 1, then this routine returns 1. If the first button is labeled 0, then this routine returns 0.

It should return -1 if the digitizer cursor buttons are not being used by the driver. See D_cursor_buttons.

For example, if the digitizer buttons are labeled 0-9, then this routine would return 0. If the digitizer buttons are
labeled 1-16, then this routine would return 1.

The following routines perform digitizer configuration:

D_setup_origin()

This routine sets the digitizer’s origin (0,0). This routine should only return if successful, and should return a value
of 0. If it fails, an error message should be sent to the terminal screen with Write_info, and the program terminated
with a call to close_down.

Note. Frequently, the location of the digitizer’s origin can be set to some default value, without any input from the
user. Otherwise, this routine must ask the user to set the origin. The routine Write_info(o should be used to print
instructions for the user. (Refer to the GeoGraphics digitizer driver, which instructs users to set the origin in the
lower left corner of the digitizing tablet.)

159

D_clear_driver()

This function clears any button presses on the digitizer that have been queued. (Refer to 22.3 Discussion of the
Finer Points (Hints) for an explanation of why this is necessary.) This routine should only return if successful, and
should return a value of 0. If it fails, an error message should be sent to the ser with Write_info, and the program
terminated with a call to close_down.

The following two routines read the current digitizer coordinates:

D_read_raw (x, y)
double *x, *y ;

Gets the current location of the digitizer cursor, and places the digitizer coordinates in the variables x and y.

If a digitizer button was pressed, this routine returns the button’s value. The return value must be in the range of 1 through 16.
This means that if the first button is labeled 0 this routine must add 1 to the button number that is returned.

If no button was pressed, this routine returns 0.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then the foot-switch must be treated as if it were
button 1. If the digitizer has neither a foot-switch nor cursor buttons, then this routine should return 0.

D_ask_driver_raw (x, y)

double *x, *y ;

Waits for a button to be pressed and then gets the current location of the digitizer cursor, and places the digitizer coordinates
in the variables x and y. This routine returns the button’s value. The return value must be in the range of 1 through 16. This
means that if the first button is labeled 0 this routine must add 1 to the button number that is returned.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons, then the foot-switch must be treated as if it were
button 1, and this routine should wait for the foot-switch to be pressed. If the digitizer has neither a foot-switch nor cursor
buttons, then this routine should return 0 without waiting.

22.2.2. Functions Av ailable For Use
There are functions which have already been written that can be called by the digitizer driver. These are described below.

Note. These functions exist in libraries. The libraries that contain these functions are described in 22.2.3 Compiling the
Device Driver.

close_down (status)

int status ;

This function gracefully exits the calling program. Call this function with status set to -1 when an irrecoverable error has
occurred (e.g., when the digitizer does not respond, or returns an error). Otherwise, call this routine with status set to 0.

plot_points (type, np, x, y, line_color, point_color)
int type, np;

double *x, *y ;

int line_color, point_color ;

This function is to be called by collect_points. It draws the vector defined by the points in the x and y arrays on the graphics
monitor. The number of points in the vector is np.

The plot_points () function expects to receive points from collect_points in the coordinate system of the database. Digitizer
coordinates can be translated to database coordinates using transform_a_into_b .

The type indicates whether the vector is an AREA or a LINE. AREA and LINE are defined in the include file “dig_defines.h”.

The line_color and point_color indicate whether the lines and points are to be highlighted or erased. The constant

160

CLR_HIGHLIGHT indicates highlighting, and the constant CLR_ERASE indicates erase (CLR_HIGHLIGHT and
CRL_ERASE are defined in “globals.h”). The colors actually used to highlight or to erase lines and points are specified by
the user in digit.

transform_a_into_b (Xraw, Yraw, X, Y)

double Xraw, Yraw ;

double *X, *Y ;

This function converts the digitizer coordinates Xraw,Yraw into the database coordinates X,Y. This function is used by the
driver function collect_points.

Note. The transformation rule used by this routine is generated by digit when the user registers the map to the database. The
rule is already in place by the time collect_points calls transform_a_into_b ().

Write_info (line, message)

int line ;
char *message ;

This function prints a message in the four line window at the bottom of the user’s terminal in digit. The variable line must
be a number 1 through 4, which represents the line number inside the window. The message must not exceed 76 characters
and should not contain \n.

22.2.3. Compiling the Device Driver
Programs (e.g., digit) that use the digitizer driver functions are stored in libraries. When the digitizer driver is compiled, it
links with those different libraries and creates the programs. Each driver should contain a Gmakefile that contains compila-
tion instructions for gmake. The Gmakefile for the digitizer driver is complex. Rather than attempting to construct a com-
pletely new Gmakefile, it is generally simpler to copy an existing Gmakefile from another driver and modify it to meet the
needs of the new digitizer driver.

The following libraries are needed by the digitizer driver when it is compiled:

$GISBASE/src/mapdev/digit/libdigit.a
$GISBASE/src/mapdev/libes/libtrans.a
$GISBASE/src/mapdev/lib/libdig.a
$LIBDIR/libdig_atts.a

Some include files (*.h) must also be compiled into the driver. These files are located in the following directories:

$GISBASE/src/mapdev/libes
$GISBASE/src/mapdev/lib

Compile the device driver by executing gmake. This will create the digit program and any other programs dependent on the
digitizer driver code.

22.2.4. Testing the Device Driver

There are three crucial points at which the digit program calls the digitizer driver. The first occurs just after digit has
prompted the user for a file name. Digit will try to open the driver and initialize the digitizer; if this fails, it is because
D_setup_driver has failed. The second occurs when the user registers the map to the digitizer. If the program fails at this
point, there is a problem with the D_read_raw function. A final test of the driver is performed when the collect_points
function is called, which occurs when vectors are being digitized.

Before testing any programs, review the Grass Installation Guide to ensure that the digitizer is set up correctly. If more
information is needed, read the file $GISBASE/src/mapdev/README.

22.3. Discussion of the Finer Points (Hints)
This section offers several hints and pitfalls to avoid when writing the digitizer driver. It has three subsections: Setting up the
Digitizer, Program Logic, and Specific Driver Issues.

161

22.3.1. Setting up the Digitizer
The process of setting up a computer system and digitizer can be divided into three steps:

(1) Setting the internal switches on the digitizer (hardware)

(2) Running a cable between the digitizer and the computer (hardware)

(3) Setting up the serial port on the computer (software)

22.3.1.1.Setting the internal switches

The switches on the digitizer must be set so that the digitizer will run under request or prompt mode, which means that the
digitizer will only send output when it is requested or prompted by the program. Thus, the program controls the timing of the
output from the digitizer and will only receive information when it is ready to process it. Refer to the manual included with
the digitizer for specific information on its set-up.

Note. The digitizer must be able to use an RS232 serial interface and transmit information only when prompted by the
program. If the digitizer cannot transmit information on command, then it cannot be used as a GRASS digitizer.

22.3.1.2.Running a cable between the digitizer and computer
A cable must be made to connect the digitizer to a RS232 serial port on the computer. Different model computers, even when
from the same maker, may require different cable configurations. For example, one computer may need a straight-through
cable, while another computer may need pins 6, 8, and 20 looped back on the computer side. A break-out box can be used to
deduce digitizer cable requirements and ensure that the digitizer is actually talking to the computer.

22.3.1.3.Configuring the serial port

The digitizer is plugged into a serial port (/ dev/ tty??) on the computer, which must be configured for a digitizer to run on
it. To set up the tty for the digitizer, turn that tty’s getty off, and make the tty readable and writable by anyone.

A final suggestion: document the information that has been learned. The file $GISBASE/ src/ mapdev/ digitizers/ altek/
INSTALL.ALTEK can be used as an example. It contains the switch settings for the Altek, cable configurations, and other
useful information. Such documentation is invaluable when another digitizer is added, problems arise, or if the digitizer
switch settings have to be changed because other software is using the digitizer.

22.3.2. Program Logic
All digitizing programs follow the same basic steps, whether they test the digitizer, or appear in a complex digitizing program
like digit. The following sequence gives the programmer a feel for how the digitizer driver is used by the calling programs.

(1) Link the program to the digitizer (open the tty)

(2) Set the tty to the appropriate state (ioctl calls)

(3) Initialize the digitizer (setting resolution, setting origin, ...)

(4) Ask the digitizer for data containing a set of coordinates

(5) Read the data from the digitizer

(6) Interpret the data into usable coordinates (x, y)

(7) Display the coordinates (x, y)

(8) Loop back for more data or until user wants to quit

In order to become familiar with the architecture of a digitizer driver, it is useful to write a simple program to test the
digitizer. If a digitizing problem arises, the diagnostic program can help isolate the cause of the problem (hardware, software,
cable, etc.).

162

22.3.3. Specific Driver Issues

The writing of digitizer device drivers can be complex. This section explores four issues in greater depth:

(1) Connecting to the digitizer
(2) Initializing and reading the digitizer
(3) Synchronizing the digitizer and computer
(4) Digitizer cursors with buttons

Connecting to the digitizer :
In GRASS, the computer communicates directly with the digitizer to which (through the serial port tty) the digi-
tizer is connected. The tty to which the digitizer is connected is opened, read, and written to just like a file.
D_setup_driver will open the tty, set file permissions to read and write, and set the running state of the tty. Some
experimenting with the different line disciplines (CBREAK, RAW) may be necessary to determine the best state for
the tty, but RAW seems to be the norm. Changing the running state of a tty consists of changing the structures
associated with that particular tty and reflecting the changes to the operating system by using ioctl (). Unfortu-
nately, the information is stored differently under different operating systems.

GRASS digitizer drivers have been written under the System V (AT&T) and Berkeley (UCB) UNIX operating
systems. A major difference between these two operating systems is the way they handle terminal interfaces (ttys).
Terminal information is contained in structures in <termio.h> under System V, and in <sgtty.h> under Berkeley. In
other words, the structures, and the names used in the structures, will differ depending on the operating system. All
tty related system-dependent code has C preprocessor # ifdef SYSV statments around it in the existing drivers.
System-dependent code is defined as either being under System V (SYSV) or Berkeley. This issue will only arise
when the tty to which the digitizer is connected is being opened, using D_setup_driver.

Initializing and reading the digitizer :

The driver and the digitizer communicate by using the UNIX read () and write () functions. D_setup_driver sets up
the digitizer software by writing command strings to the tty. Since each digitizer is different, the digitizer’s user
manual frequently proves to be the only source of information on how to initialize and read the digitizer.

Setting up a consistently good function to read the digitizer is the most difficult part of writing the digitizer driver.
The read () function, when reading from a tty, may not read as many characters as requested. For example, if six
bytes are requested, read () can return anywhere from zero to six bytes.

One approach is to request six bytes, and then, if the number of bytes actually read is not six, issue another read (
), this time asking only for the number of bytes remaining. In other words, if six bytes were requested but only two
were received, then another read for four bytes is issued. If that read returned one byte, then another read is re-
quested for three bytes, etc. This would continue until either all six bytes were read, or a timeout occurred. This
approach worked well in the Altek driver. Another approach that was tried was to request six bytes, and then, if less
than six bytes were received, the bytes were thrown away, and another six bytes were requested. This was repeated
until the read returned six bytes. This approach worked some of the time, but sometimes gav e unreliable coordi-
nates, and was abandoned. Other digitizer drivers have been written that read ascii characters from the digitizer and
use sscanf () to strip out the needed information. The number of characters actually read to get one set of coordi-
nates will depend on the digitizer and on the information stated in the digitizer’s user manual.

Another problem, in the case of the Altek, is that the cursor is only active in certain portions of the tablet. This
means that either there will be no output, or a specific flag will be on/off, until the cursor is within the active area
of the tablet. Because no external markings on the tablet delineate the active area, individuals commonly attempt to
digitize within the tablet’s inactive area, leading them to the false assumption that the digitizer is acting strangely.
Depending on the digitizer, this will have to be handled by fine tuning the reads and/or checking the status byte(s).

A word of warning - if the tty is not set up properly in D_setup_driver, the read () function can return confusing
information (i.e., it may include garbage with the data or be unable to read the number of characters specified).

Synchronizing the digitizer and computer :

Driver checking has been added to post-3.0 drivers, to warn the user when the driver is out of sync with the digitizer.
For example, the Altek has the high bit turned on in the first byte of the six bytes that are read. The driver checks to
make sure that the high byte is turned on ; if it is not, the digitizer and driver are out of sync. The driver warns the

163

user, resets the digitizer and then reinitializes the digitizer.

Digitizer cursors with buttons:

Drivers can be written to use the digitizer buttons or the keyboard for input while digitizing. Where drivers use the
digitizer buttons, some digitizers will queue up any button hits. (This may depend on what running state the
digitizer was set up with when it was initialized.) This means that if a person pushes the digitizer cursor buttons a
number of times and then begins to digitize, the program must clear the queue of button hits before beginning to
digitize. Other digitizers will only say that a button has been hit if the button has been hit and the digitizer has been

prompted for a coordinate.

164

Chapter 23

Writing a Graphics Driver

23.1. Introduction
GRASS application programs which use graphics are written with the Raster Graphics Library . At compilation time, no
actual graphics device driver code is loaded. It is only at run-time that the graphics requests make their way to device-specific
code. At run-time, an application program connects with a running graphics device driver, typically via system level first-in-
first-out (fifo) files. Each GRASS site may have one or more of these programs to choose from. They are managed by the
program d.mon.

Porting GRASS graphics programs from device to device simply requires the creation of a new graphics driver program.
Once completed and working, all GRASS graphics programs will work exactly as they were designed without modification
(or recompilation). This section is concerned with the creation of a new graphics driver.

23.2. Basics
The various drivers have source code contained under the directory $GISBASE/src/D/devices. This directory contains a
separate directory for each driver, e.g., SUNVIEW and MASS. In addition, the directory lib contains files of code which are
shared by the drivers. The directory GENERIC contains the beginnings of the required subroutines and sample Gmakefile.

A new driver must provide code for this basic set of routines. Once working, the programmer can choose to rewrite some of
the generic code to increase the performance of the new driver. Presented first below are the required routines. Suggested
options for driver enhancement are then described.

23.3. Basic Routines
Described here are the basic routines required for constructing a new GRASS graphics driver. These routines are all found in
the GENERIC directory. It is suggested that the programmer create a new directory (e.g., MYDRIVER) into which all of the
GENERIC files are copied (i.e., cp GENERIC/* MYDRIVER).

23.3.1. Open/Close Device

Graph_Set () initialize graphics
This routine is called at the start-up of a driver. Any code necessary to establish the desired graphics environment is included
here. Often this means clearing the graphics screen, establishing connection with a mouse or pointer, setting drawing param-
eters, and establishing the dimensions of the drawing screen. In addition, the global integer variables SCREEN_LEFT,
SCREEN_RIGHT, SCREEN_TOP, SCREEN_BOTTOM, and NCOLORS must be set. Note that the GRASS software
presumes the origin to be in the upper left-hand corner of the screen, meaning:

SCREEN_LEFT < SCREEN_RIGHT

SCREEN_TOP < SCREEN_BOTTOM

You may need to flip the coordinate system in your device-specific code to support a device which uses the lower left corner
as the origin. These values must map precisely to the screen rows and columns. For example, if the device provides graphics
access to pixel columns 2 through 1023, then these values are assigned to SCREEN_LEFT and SCREEN_RIGHT, respec-
tively.

NCOLORS is set to the total number of colors available on the device. This most certainly needs to be more than 100 (or so).

Graph_Close () shut down device

Close down the graphics processing. This gets called only at driver termination time.

165

23.3.2. Return Edge and Color Values

The four raster edge values set in the Graph_Set() routine above are retrieved with the following routines.

Screen_left (index) return left pixel column value
Screen_rite (index) return right pixel column value
Screen_top (index) return top pixel row value
Screen_bot (index) return bottom pixel row value

int *index ;

The requested pixel value is returned in index.

These next two routines return the number of colors. There is no good reason for both routines to exist; chalk it up to the
power of anachronism.

Get_num_colors (index) return number of colors

int *index ;

The number of colors is returned in index.

get_num_colors () return number of colors

The number of colors is returned directly.

23.3.3. Drawing Routines
The lowest level drawing routines are draw_line(), which draws a line between two screen coordinates, and Polygon_abs()
which fills a polygon.

draw_line (x1,y1,x2,y2) draw a line

int x1, y1, x2, y2 ;

This routine will draw a line in the current color from x1,y1 to x2,y2.

Polygon_abs (x,y,n) draw filled polygon

int *x, *y ;

int n ;

Using the n screen coordinate pairs represented by the values in the x and y arrays, this routine draws a polygon filled with
the currently selected color.

23.3.4. Colors

This first routine identifies whether the device allows the run-time setting of device color look-up tables. If it can (and it
should), the next two routines set and select colors.

Can_do () signals run-time color look-up table access
If color look-up table modification is allowed, then this routine must return 1; otherwise it returns 0. If your device has fixed
colors, you must modify the routines in the lib directory which set and select colors. Most devices now allow the setting of
the color look-up table.

reset_color (number, red, green, blue) set a color

it number

unsigned char red, green, blue ;

166

The system’s color represented by number is set using the color component intensities found in the red, green, and blue
variables. A value of 0 represents 0% intensity; a value of 255 represents 100% intensity. color (number) select a color int
number ;

The current color is set to number. This number points to the color combination defined in the last call to reset_color() that
referenced this number.

23.3.5. Mouse Input
The user provides input through the three following routines.

Get_location_with_box (cx,cy,wx,wy,button) get location with rubber box

int cx, cy ;

int *wx, *wy ;

int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be the following values which
correspond to the following software meanings:

1 - left button
2 - middle button
3 - right button

A rubber-band box is used. One corner is fixed at the cx,cy coordinate. The opposite coordinate starts out at wx,wy and then
tracks the mouse. Upon button depression, the current coordinate is returned in wx,wy and the button pressed is returned in
button.

Get_location_with_line (cx,cy,wx,wy,button) get location with rubber line
int cx, cy ;
int *wx, *wy ;
int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be the following values which
correspond to the following software meanings:

1 - left button
2 - middle button
3 - right button

A rubber-band line is used. One end is fixed at the cx,cy coordinate. The opposite coordinate starts out at wx,wy and then
tracks the mouse. Upon button depression, the current coordinate is returned in wx,wy and the button pressed is returned in
button.

Get_location_with_pointer (wx,wy,button) get location with pointer

int *wx, *wy ;

int *button ;

Using mouse device, get a new screen coordinate and button number. Button numbers must be the following values which
correspond to the following software meanings:

1 - left button
2 - middle button
3 - right button

A cursor is used which starts out at wx,wy and then tracks the mouse. Upon button depression, the current coordinate is
returned in wx,wy and the button pressed is returned in button.

167

23.3.6. Panels

The following routines cooperate to save and restore sections of the display screen.

Panel_save (name, top, bottom, left, right) save a panel
char *name ;
int top, bottom, left, right ;

The bit display between the rows and cols represented by top, bottom, left, and right are saved. The string pointed to by
name is a file name which may be used to save the image.

Panel_restore (name) restore a panel

char *name ;

Place a panel saved in name (which is often a file) back on the screen as it was when it was saved. The memory or file
associated with name is removed.

23.4. Optional Routines
All of the above must be created for any new driver. The GRASS Rasterlib, which provides the application program routines
which are passed to the driver via the fifo files, contains many more graphics options. There are actually about 44. Above, we
have described 19 routines, some of which do not have a counterpart in the Rasterlib. For GRASS 3.0, the basic driver
library was expanded to accommodate all of the graphics subroutines which could be accomplished at a device-dependent
level using the 19 routines described above. This makes driver writing quite easy and straightforward. A price that is paid is
that the resulting driver is probably slower and less efficient than it might be if more of the routines were written in a device-
dependent way. This section presents a few of the primary target routines that you would most likely consider rewriting for
a new driver.

It is suggested that the driver writer copy entire files from the lib area that contain code which shall be replaced. In the
loading of libraries during the compilation process, the entire file containing an as yet undefined routine will be loaded. For
example, say a file “ab.c” contains subroutines a() and b(). Even if the programmer has provided subroutine a() elsewhere,
at load time, the entire file “ab.c” will be loaded to get subroutine b(). The compiler will likely complain about a multiply
defined external. To avoid this situation, do not break routines out of their files for modification; modify the entire file.

Raster_int (n, nrows, array, withzeros, type) raster display
int n ;
int nrows ;
unsigned int *array ;
int withzeros ;
int type ;

This is the basic routine for rendering raster images on the screen. Application programs construct images row by row,
sending the completed rasters to the device driver. The default Raster_int() in lib draws the raster through repetitive calls to
color() and draw_line(). Often a 20x increase in rendering speed is accomplished through low-level raster calls. The raster
is found in the array pointer. It contains color information for n colors and should be repeated for nrows rows. Each
successive row falls under the previous row. (Depending on the complexity of the raster and the number of rows, it is
sometimes advantageous to render the raster through low-level box commands.) The withzeros flag indicates whether the
zero values should be treated as color 0 (withzeros= =1) or as invisible (withzeros= =0). Finally, type indicates that the
raster values are already indexed to the hardware color look-up table (type= =0), or that the raster values are indexed to
GRASS colors (which must be translated through a look-up table) to hardware look-up table colors (type= =1).

Further details on this routine and related routines Raster_chr(), and Raster_def() are, of course, found in the definitive
documentation: the source code.

168

Chapter 24

Writing a Paint Driver

24.1. Introduction
The paint system, which produces hardcopy maps for GRASS, is able to support many different types of color printers. This
is achieved by placing all device-dependent code in a separate program called a device driver. Application programs, written
using a library of device-independent routines, communicate with the device driver using the UNIX pipe mechanism. The
device driver translates the device-independent requests into graphics for the device.

A paint driver has two parts: a shell script and an executable program. The executable program is responsible for translating
device-independent requests into graphics on the printer. The shell script is responsible for setting some UNIX environment
variables that are required by the interface, and then running the executable program. The user first selects a printer using the
p.select program. The selected printer is stored in the GRASS environment variable PAINTER. Then the user runs one of the
application programs. The principal paint applications that produce color output are p.map which generates scaled maps,
and p.chart which produces a chart of printer colors. The application looks up the PAINTER and runs the related shell script
as a child process. The shell script sets the required environment variables and runs the executable. The application then
communicates with the driver via pipes.

24.2. Creating a Source Directory for the Driver Code
The source code for paint drivers lives in

$GISBASE/src/paint/Drivers
Each driver has its own subdirectory containing the source code for the executable program, the shell script, and a Gmakefile
with rules that tell the GRASS gmake command how to compile the driver.

24.3. The Paint Driver Executable Program
A paint device driver program consists of a set of routines (defined below) that perform the device-dependent functions.
These routines must be written for each device to be supported.

24.3.1. Printer I/O Routines
The following routines open the printer port and perform low-level i/o to the printer.

Popen (port) open the printer port

char *port;

Open the printer port for output. If the port is a tty, perform any necessary tty settings (baud rate, xon/xoff, etc.) required. No
data should be written to the port.

The port will be the value of the UNIX environment variable MAPLP, if set, and NULL otherwise. It is recommended that
device drivers use the port that is passed to them so that paint has a consistent logic.

The baud rate should not be hardcoded into Popen (). It should be set in the driver shell as the UNIX environment variable
BAUD. Popen () should determine the baud rate from this environment variable.

Pout (buf, n) write to printer unsigned

char *buf;

int n;

Output the data in buf. The number of bytes to send is n. This is a low-level request. No processing of the data is to be done.
Output is simply to be sent as is to the printer.

169

It is not required that data passed to this routine go immediately to the printer. This routine can buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

Poutc (c) write a character to printer
unsigned char c;

Sends the character c to the printer. This routine can be implemented as follows:

Poutc© unsigned char c;

{
Pout(c, 1);

}

Pouts (s) write a string to printer unsigned

char *s;

Sends the character string s to the printer. This routine can be implemented as follows:

Pouts(s) unsigned char *s;

{
Pout(s, strlen(s));

}

Pflush () flush pending output

Flush any pending output to the printer. Does not close the port.

Pclose () close the printer port

Flushes any pending output to the printer and closes the port.

Note. The above routines are usually not device dependent. In most cases the printer is connected either to a serial tty port or
to a parallel port. The paint driver library contains versions of these routines which can be used for output to either serial or
parallel ports. Exceptions to this are the preview driver, which sends its output to the graphics monitor, and the NULL driver
which sends debug output to stderr.

24.3.2. Initialization

The following routine will be called after Popen to initialize the printer :

Pinit () initialize the printer
Initializes the printer. Sends whatever codes are necessary to get the printer ready for printing.

24.3.3. Alpha-Numeric Mode
The following two routines allow the printer to be used for normal text printing:

Palpha () place printer in text mode

Places the printer in alpha-numeric mode. In this mode, the driver should only honor Ptext calls.

170

Ptext (text) print text

char *text;

Prints the text string on the printer.

The text will not normally have nonprinting characters (i.e., control codes, tabs, linefeeds, returns, etc.) in it. Such characters
in the text should be ignored or suppressed if they do occur. If the printer requires any linefeeds or carriage returns, this
routine should supply them.

Note. If the printer does not have support for text in the hardware, it must be simulated. The shinko635 printer does not have
text, and the code from that driver can be used.

24.3.4. Graphics Mode

The following routines perform raster color graphics:

Praster () place printer in graphics mode

Places the printer in raster graphics mode. This implies that subsequent requests will be related to generating color images on
the printer.

Pnpixels(nrows, ncols) report printer dimensions
int *nrows;
int *ncols;

The variable ncols should be set to the number of pixels across the printer page. If the driver is combining physical pixels
into larger groupings (e.g., 2x2 pixels) to create more colors, then ncols should be set to the number of these larger pixels.

The variable nrows should be set to 0. A non-zero value means that the output media does not support arbitrarily long output
and p.map will scale the output to fit into a window nrows x ncols. The only driver which should set this to a non-zero value
is the preview driver, which sends its output to the graphics screen.

Ppictsize (nrows, ncols) defined picture size

int nrows;

int ncols;

Prepare the printer for a picture with nrows and ncols. The number of columns ncols will not exceed the number of columns
returned by Pnpixels.

There is no limit on the number of rows nrows that will be requested. p.map assumes that the printer paper is essentially
infinite in length. Some printers (e.g., thermal printers like the shinko635) only allow a limited number of rows, after which
they leave a gap before the output can begin again. It is up to the driver to handle this. The output will simply have gaps in it.
The user will cut out the gaps and tape the pieces back together.

Pdata (buf, n) send raster data to printer unsigned

char *buf;

int n;

Output the raster data in buf. The number of bytes to send is n, which will be the ncols as specified in the previous call to
Ppictsize. The values in buf will be printer color numbers, one per pixel.

Note that the color numbers in buf have full color information encoded into them (i.e., red, green, and blue). Some printers
(e.g., inkjet) can output all the colors on a row by row basis. Others (e.g., thermal) must lay down a full page of one color,
then repeat with another color, etc. Drivers for these printers will have to capture the raster data into temporary files and then
make three passes through the captured data, one for each color.

171

Prle(buf, n) send rle raster data to printer
unsigned char *buf;
int n;

Output the run-length encoded raster data in buf. The data is in pairs: color, count , where color is the raster color to be sent,
and count is the number of times the color is to be repeated (with a count of 0 meaning 256). The number of pairs is n. Of
course, all the counts should add up to ncols as specified in the previous call to Ppictsize. If the printer can handle run-length
encoded data, then the data can be sent either directly or with minimal manipulation. Otherwise, it must be converted into
standard raster form before sending it to the printer.

24.3.5. Color Information
The paint system expects that the printer has a predefined color table. No attempt is made by paint to download a specific
color table. Rather, the driver is queried about its available colors. The following routines return information about the
colors available on the printer. These routines may be called even if Popen has not been called.

Pncolors () number of printer colors

This routine returns the number of colors available. Currently, this routine must not return a number larger than 255. If the
printer is able to generate more than 255 colors, the driver must find a way to select a subset of these colors. Also, the paint
system works well with printers that have around 125 different colors. If the printer only has three colors (e.g., cyan, yellow,
and magenta), then 125 colors can be created using a 2x2 pixel.

Pcolorlevels (red, green, blue) get color levels

int *red, *green, *blue;

Returns the number of colors levels. This means, for example, if the printer has 125 colors, the color level would be 5 for
each color; if the printer has 216 colors, the color levels would be 6 for each color, etc.

Pcolornum(red, green, blue) get color number
float red, green, blue;

This routine returns the color number for the printer which most closely approximates the color specified by the red, green,
and blue intensities. These intensities will be in the range 0.0 to 1.0.

The printer color numbers must be in the range 0 to n -1, where n is the number of colors returned by Pncolors.

For printers that have cyan, yellow, and magenta instead of red, green and blue, the conversion formulas are:

cyan = 1.0 - red
yellow = 1.0 - blue
magenta = 1.0 - green

Pcolorvalue (n, red, green, blue) get color intensities

int n;

float *red, *green, *blue;

This routine computes the red, green, and blue intensities for the printer color number n. These intensities must be in the
range 0.0 to 1.0. If n is not a valid color number, set the intensities to 1.0 (white).

24.4. The Device Driver Shell Script
The driver shell is a small shell script which sets some environment variables, and then executes the driver. The following
variables must be set :

172

MAPLP

This variable should be set to the tty port that the printer is on. The tty named by this variable is passed to Popen. Only in very
special cases can drivers justify either ignoring this value or allowing it not to be set.

The drivers distributed by USACERL have MAPLP set to /dev/${PAINTER}. Thus each driver must have a corresponding /
dev port. These are normally created as links to real /dev/tty ports.

BAUD
This specifies the baud rate of the output tty port. This variable is only needed if the output port is a serial RS-232 tty port.
The value of the variable should be an integer (e.g., 1200, 9600, etc.), and should be used by Popen to set the baud rate of the
tty port.

HRES

This specifies the horizontal resolution of the printer in pixels per inch. This is a positive floating point number.

VRES

This specifies the vertical resolution of the printer in pixels per inch. This is a positive floating point number.

NCHARS

This specifies the maximum number of characters that can be printed on one line in alpha-numeric mode.

Note. The application programs do not try to deduce the width in pixels of text characters.

TEXTSCALE

This positive floating point number is used by p.map to set the size of the numbers placed on the grid when maps are drawn.
The normal value is 1.0, but if the numbers should appear too large, a smaller value (0.75) will shrink these numbers. If they
appear too small, a larger value (1.25) will enlarge them. This value must be determined by trial and error.

The next five variables are used to control the color boxes drawn in the map legend for p.map as well as the boxes for the
printer color chart created by p.chart. They hav e to be determined by trial and error in order to get the numbering to appear
under the correct box.

NBLOCKS

This positive integer specifies the maximum number of blocks that are to be drawn per line.

BLOCKSIZE

This positive integer specifies the number of pixels across the top of an individual box.

BLOCKSPACE

This positive integer specifies the number of pixels between boxes.

TEXTSPACE

This positive integer specifies the number of space characters to output after each number (printed under the boxes).

173

TEXTFUDGE
This nonnegative integer provides a way of inserting extra pixels between every other box, or every third box, etc. On some
printers, this will not be necessary, in which case TEXTFUDGE should be set to 0. If you find that the numbers under the
boxes are drifting away from the intended box, the solution may be to move every other box, or every third box over 1 pixel.
For example, to move every other box, set TEXTFUDGE to 2.

The following is a sample paint driver shell script :

: ${PAINTER?} ${PAINT_DRIVER?}
MAPLP=/dev/$PAINTER
BAUD=9600
HRES=85.8
VRES=87.0
NCHARS=132
TEXTSCALE=1.0
NBLOCKS=25
BLOCKSIZE=23
BLOCKSPACE=13
TEXTSPACE=1
TEXTFUDGE=3
export MAPLP BAUD HRES VRES NCHARS
export TEXTSCALE TEXTSPACE TEXTFUDGE
export NBLOCKS BLOCKSIZE BLOCKSPACE
exec $PAINT_DRIVER

24.5. Programming Considerations
The paint driver uses its standard input and standard output to communicate with the paint application program. It is very
important that neither the driver shell nor the driver program write to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to stderr. There is an error routine which driver programs can use for fatal
error messages. It is defined as follows:

error (message, perror)

char *message;

int perror;

This routine prints the message on stderr. If perror is true (i.e., non-zero), the UNIX routine perror () will be also called to
print a system error message. Finally, exit () is called to terminate the driver.

24.6. Paint Driver Library
The paint system comes with some code that has already been written. This code is in object files under the paint driver
library directory. These object files are:

main.o

This file contains the main () routine which must be loaded by every driver, since it contains the code that
interfaces with the application programs.

io.o

This file contains versions of Popen, Pout, Poutc, Pout, Pflush, and Pclos which can be used with printers that are
connected to serial or parallel ports. These routines handle the tricky tty interfaces for both System V and Berkeley
UNIX, allowing full 8-bit data output to the printer, with xon/xoff control enabled, as well as baud rate selection.

174

colors125.o

This file contains versions of Pncolors, Pcolorlevels, Pcolornum, and Pcolorvalue for the 125 color logic de-
scribed in 24.8 Creating 125 Colors From 3 Colors.

24.7. Compiling the Driver
Paint drivers are compiled using the GRASS gmake utility which requires a Gmakefile containing compilation rules. The
following is a sample Gmakefile :

NAME = sample
DRIVERLIB = $(SRC)/paint/Interface/driverlib
INTERFACE = $(DRIVERLIB)/main.o \

$(DRIVERLIB)/io.o \
$(DRIVERLIB)/colors125.o

DRIVER_SHELL = $(ETC)/paint/driver.sh/$(NAME)
DRIVER_EXEC = $(ETC)/paint/driver/$(NAME)

OBJ = alpha.o text.o raster.o npixels.o \
pictsize.o data.o rle.o

all: $(DRIVER_EXEC) $(DRIVER_SHELL)

$(DRIVER_EXEC): $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) $(INTERFACE) $(OBJ) $(LOCKLIB) -o $@

$(DRIVER_SHELL): DRIVER.sh
rm -f $@
cp $? $@
chmod +x $@

$(OBJ): P.h
$(LOCKLIB): # in case library changes

There are some features about this Gmakefile that should be noted:

printer name (NAME)

The printer name sample is assigned to the NAME variable, which is then used everywhere else.

paint driver library (DRIVERLIB)

This driver loads code from the common paint driver library. It loads main.o containing the main () routine for the
driver. All drivers must load main.o .It loads io.o which contains versions of Popen, Pout, Poute, Pouts, Pflush,
and Pclose for serial and parallel ports. It also loads colors125.o which contains versions of Pncolors, Pcolorlevels,
Pcolornum, and Pcolorvalue for 125 colors.

lock library (LOCKLIB)

The driver loads the lock library. This is a GRASS library which must be loaded if the Popen from the driver library
is used.

homes for driver shell and executable

The driver executable is compiled into the driver directory, and the driver shell is copied into the driver.sh direc-
tory. This means that the driver executable is placed in

$GISBASE/etc/paint/driver
and the driver shell in

$GISBASE/etc/paint/driver.sh.

175

24.8. Creating 125 Colors From 3 Colors
The paint system expects that the printer will have a reasonably large number of colors. Some printers support a large color
table in the hardware. But others only support three primary colors: red, green, and blue (or cyan, yellow, and magenta). If the
printer only has three colors, the driver must simulate more.

If the printer pixels are grouped into 2x2 combinations of pixels, then 125 colors can be simulated. For example, a color with
20% red, 100% green, and 0% blue would have one of the four pixels painted red, all four pixels painted green, and none of
the pixels painted blue.

The following code converts a color intensity in the range 0.0 to 1.0 into a number from 0-4 (i.e., the number of pixels to
“turn on” for that color):

npixels = (intensity * 5);

if (npixels > 4)

npixels = 4 ;

This logic will agree with the 125 color logic used by the paint driver library130 routines Pncolors, Pcolorlevels, Pcolornum,
and Pcolorvalue, provided that the color numbers are assigned as follows:

color_number = red_pixels * 25 + green_pixels * 5 + blue_pixels ;

176

Chapter 25

Writing GRASS Shell Scripts

This section describes some of the things a programmer should consider when writing a shell script that will become a
GRASS command.

25.1. Use the Bourne Shell
The Bourne Shell (/bin/sh) is the original UNIX command interpreter. It is available on most (if not all) versions of UNIX.
Other command interpreters, such as the C-Shell (/bin/csh), are not as widely available. Therefore, programmers are strongly
encouraged to write Bourne Shell scripts for maximum portability.

The discussion that follows is for the Bourne Shell only. It is also assumed that the reader knows (or can learn) how to write
Bourne Shell scripts. This chapter is intended to provide guidelines for making them work properly as GRASS commands.

25.2. How a Script Should Start
There are some things that should be done at the beginning of any GRASS shell script :

(1) Verify that the user is running GRASS, and
(2) Cast the GRASS environment variables into the UNIX environment, and verify that the variables needed by the shell

script are set.

#!/bin/sh
if test “$GISRC” = “”
then
 echo “Sorry, you are not running GRASS” >&2
 exit 1
fi
eval ‘g.gisenv‘
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MASPET?}

Note the use of the : command. This command simply evaluates its arguments. The syntax ${GISBASE?} means that if
GISBASE is not set, issue an error message to standard error and exit the shell script.

25.3. g.ask
The GRASS command g.ask emulates the prompting found in all other GRASS commands, and should be used in shell
scripts to ask the user for files from the GRASS database. The user’s response can be cast into shell variables. The following
example asks the user to select an existing raster file:

g.ask type=old prompt=”Select a raster file” element=cell desc=raster unixfile=/tmp/$$

. /tmp/$$

rm -f /tmp/$$
if test “$name” = “”
then
 exit 0
fi

177

The g.ask manual entry in the GRASS User’s Reference Manual describes this command in detail. Here, the reader should
note the following:

(1) The temporary file used to hold the user’s response is /tmp/$$. The Bourne Shell will substitute its process id for the $$
thus creating a unique file name;

(2) The next line, which begins with a dot, sources the commands contained in the temporary file. These commands are:
name=something
mapset=something
file=something

Therefore, the variables $name, $mapset, and $file will contain the name, mapset and full UNIX file name of the raster file
selected by the user;

(3) The temporary file is removed; and
(4) If $name is empty, this means that the user changed his or her mind and did not select any raster file. In this case,

something reasonable is done, like exiting.

25.4. g.findfile
The g.findfile command can be used to locate GRASS files that were specified as arguments to the shell script (instead of
prompted for with g.ask). Assuming that the variable $request contains the name of a raster file, the following checks to see
if the file exists. If it does, the variables $name, $mapset and $file will be set to the name, mapset and full UNIX file name for
the raster file:

eval ‘g.findfile element=cell file=”$request”‘
if test “$mapset” = “”
then
 echo ERROR: raster file “$request” not found >&2
 exit 1
fi

Note. The programmer should use quotes with $request, since it may contain spaces. (quotes will preserve the full request).
If found, g.findfile outputs $name as the name part and $mapset as the mapset part. See the g.findfile manual entry in the
GRASS User’s Reference Manual for more details.

178

Appendix A

Annotated Gmakefile Predefined Variables

The predefined Gmakefile variables are defined in the files head and make.mid. These files can be found under $GISBASE/
src/CMD.

Note: Some of the variables shown here are described in more detail in 11 Compiling and Installing GRASS Programs.

head

The head file contains machine dependent and installation dependent information. It is created by system personnel when
GRASS is installed on a system prior to compilation. This file varies from system to system. The name of this file may also
vary, depending on the machine or architecture for which GRASS is compiled.

Here is a sample head file:

Variable Value Description
ARCH = sun3 Architecture to compile on
GISBASE = /usr/grass4.2 Location of GRASS program

UNIX_BIN =/usr/local/bin Miscellaneous GRASS commands

DEFAULT_DAT ABASE = /usr/grass/data Location of default database

DEFAULT_LOCATION = spearfish Name of defaut database

COMPILE_FLAGS =-O Compiler flags
LDFLAGS =-s Loader flags
DIGIT_FLAGS =
MATHLIB =-lm Math libraries
TERMLIB = -ltermlib Terminal emulation libraries
CURSES = -lcurses $(TERMLIB) Curses libraries
LIBRULE = ar ruv $@ $?; ranlib $@ Library archiver
#LIBRULE = ar rc $@ ‘lorder $(OBJ) | tsort‘ Alternate form of library archiver command

#USE_TERMIO = -DUSE_TERMIO Use TERMIO or not?

USE_MTIO =-DUSE_MTIO Use MTIO?

DIGITFLAGS =

179

make.mid
The make.mid file uses the variables in makehead to construct other variables that are useful for compilation rules. The
contents of this file are usually unchanged from system to system.

Here is a sample make.mid file:

Variable Value Description
SHELL =/bin/sh
BIN =$(GISBASE)/bin GRASS command links
ETC =$(GISBASE)/etc Main GRASS commands
GARDEN_BIN =$(GISBASE)/garden/bin Garden commands

GARDEN_ETC =$(GISBASE)/garden/etc

BIN_MAIN_INTER = $(ETC)/bin/main/inter Main interactive commands

BIN_MAIN_CMD = $(ETC)/bin/main/cmd Main command-line commands

BIN_ALPHA_INTER = $(ETC)/bin/alpha/inter Alpha interactive

BIN_ALPHA_CMD = $(ETC)/bin/alpha/cmd Alpha command-line

BIN_CONTRIB_INTER = $(ETC)/bin/contrib/inter Contributed interactive

BIN_CONTRIB_CMD = $(ETC)/bin/contrib/cmd Contributed command-line

TXT =$(GISBASE)/txt Text directory
MAN1 =$(GISBASE)/man/1 Manual page directories
MAN2 =$(GISBASE)/man/2
MAN3 =$(GISBASE)/man/3
MAN4 =$(GISBASE)/man/4
MAN5 =$(GISBASE)/man/5
MAN6 =$(GISBASE)/man/6
HELP =$(GISBASE)/man/help
CFLAGS = $(COMPILE_FLAGS)

$(EXTRA_CFLAGS)
-I$(LIBDIR)
$(USE_TERMIO)

AR = $(GMAKE) -makeparentdir $@; All library archiver flags

$(LIBRULE)

MANROFF = tbl -TX Manual formatter command and options
$(SRC)/man.help/man.version
$(SRC)/man.help/man.header $? |
nroff -Tlp | col -b > $@

MAKEALL = $(GMAKE) -all Command to make GRASS

LIBDIR =$(SRC)/libes GRASS libraries
DIG_LIBDIR =$(SRC)/mapdev/libes
DIG_INCLUDE = $(SRC)/mapdev/lib
VECT_INCLUDE =-I$(SRC)/mapdev/Vlib

-I$(SRC)/mapdev/diglib
VASKLIB =$(LIBDIR)/libvask.a Vask libraries
VASK = $(VASKLIB) $(CURSES) Vask and flags
GISLIB =$(LIBDIR)/libgis.a GIS libraries
ICONLIB =$(LIBDIR)/libicon.a
LOCKLIB =$(LIBDIR)/liblock.a

180

Variable Value Description
IMAGERYLIB =$(LIBDIR)/libI.a GIS Libraries
RO WIOLIB = $(LIBDIR)/librowio.a
COORCNVLIB =$(LIBDIR)/libcoorcnv.a
SEGMENTLIB =$(LIBDIR)/libsegment.a
BTREELIB =$(LIBDIR)/libbtree.a
DLGLIB =$(LIBDIR)/libdlg.a
RASTERLIB =$(LIBDIR)/libraster.a
DISPLAYLIB =$(LIBDIR)/libdisplay.a
D_LIB =$(LIBDIR)/libD.a
DRIVERLIB =$(SRC)/display/devices/lib/driverlib.a
LINKMLIB =$(LIBDIR)/liblinkm.a
DIGLIB =$(LIBDIR)/libdig.a
DIG2LIB =$(LIBDIR)/libdig2.a
VECTLIB_REAL = $(LIBDIR)/libvect.a
VECTLIB =$(VECTLIB_REAL) $(DIG2LIB)
DIG_ATTLIB =$(LIBDIR)/libdig_atts.a
XDISPLAYLIB =$(LIBDIR)/libXdisplay.a

181

Appendix B
The CELL Data Type

GRASS cell file data is defined to be of type CELL. This data type is defined in the “gis.h” header file. Programmers must
declare all variables and buffers which will hold raster data or category codes as type CELL.

Under GRASS the CELL data type is declared to be int, but the programmer should not assume this. What should be
assumed is that CELL is a signed integer type. It may be changed sometime to short or long. This implies that use of CELL
data with routines which do not know about this data type (e.g., printf(), sscanf(), etc.) must use an intermediate variable of
type long.

To print a CELL value, it must be cast to long. For example:

CELL c; /* raster value to be printed */
/* some code to get a value for c */

printf (“%ld\n”, (long) c); /* cast c to long to print */

To read a CELL value, for example from user typed input, it is necessary to read into a long variable, and then assign it to the
CELL variable. For example:

char userbuf[128];

CELL c; long x;

printf (“Which category? “); /* prompt user */
gets(userbuf); /* get user response * /
sscanf (userbuf,”%ld”, &x); /* scan category into long variable */

c = (CELL) x; /* assign long value to CELL value */

Of course, with GRASS library routines that are designed to handle the CELL type, this problem does not arise. It is only
when CELL data must be used in routines which do not know about the CELL type, that the values must be cast to or from
long.

182

Appendix C
Index to GIS Library

Here is an index of GIS Library routines, with calling sequences and short function descriptions.

GIS Library

routine parameters description__________________
G_add_color_rule (cat1, r1, g1, b1, cat2, r2, g2, b2, colors) set colors

G_adjust_Cell_head (cellhd, rflag, cflag) adjust cell header
G_adjust_easting (east, region) returns east larger than west
G_adjust_east_longitude (east, west) adjust east longitude
G_align_window (region, ref) align two regions
G_allocate_cell_buf () allocate a raster buffer
G_area_for_zone_on_ellipsoid (north, south) area between latitudes
G_area_for_zone_on_sphere (north, south) area between latitudes
G_area_of_cell_at_row (row) cell area in specified
G_area_of_polygon (x, y, n) area in square meters of polygon
G_ask_any (prompt, name, element, label, warn) prompt for any valid file name

G_ask_cell_in_mapset (prompt, name) prompt for existing raster file

G_ask_cell_new (prompt, name) prompt for new raster file
G_ask_cell_old (prompt, name) prompt for existing raster file
G_ask_in_mapset (prompt, name, element, label) prompt for existing database file

G_ask_new (prompt, name, element, label) prompt for new database file

G_ask_old (prompt, name, element, label) prompt for existing database file

G_ask_sites_in_mapset (prompt, name) prompt for existing site list file

G_ask_sites_new (prompt, name) prompt for new site list file
G_ask_sites_old (prompt, name) prompt for existing site list file
G_ask_vector_in_mapset (prompt, name) prompt for an existing vector file

G_ask_vector_new (prompt, name) prompt for a new vector file

G_ask_vector_old (prompt, name) prompt for an existing vector file

G_begin_cell_area_calculations () begin cell area calculations
G_begin_distance_calculations () begin distance calculations
G_begin_ellipsoid_polygon_area (a, e2) begin area calculations
G_begin_geodesic_distance (a, e2) begin geodesic distance
G_begin_polygon_area_calculations () begin polygon area calculations

G_begin_zone_area_on_ellipsoid (a, e2, s) begin ellipsoid area calculations

G_begin_zone_area_on_sphere (r, s) initialize calculations for sphere

G_bresenham_line (x1, y1, x2, y2, point) Bresenham line algorithm

G_calloc (n,size) memory allocation
G_close_cell (fd) close a raster file
G_col_to_easting (col, region) column to easting
G_database_projection_name (proj) query cartographic projection
G_database_unit_name (plural) database units
G_database_units_to_meters_factor () conversion to meters
G_date () current date and time
G_define_flag () return Flag structure
G_define_option () returns Option structure
G_disable_interactive () turns off interactive capability
G_distance (x1, y1, x2, y2) distance in meters
G_easting_to_col (east, region) easting to column
G_ellipsoid_name (n) return ellopsoid name
G_ellipsoid_polygon_area (lon, lat, n) area of lat-long polygon
G_fatal_error (message) print error message and exit
G_find_cell (name,mapset) find a raster file
G_find_cell_stat (cat, count, s) random query of cell stats
G_find_file (element, name, mapset) find a database file
G_find_vector2 (name,mapset) find a vector file

183

G_find_vector (name,mapset) find a vector file
G_fopen_append (element, name) open a database file for update
G_fopen_new (element, name) open a new database file
G_fopen_old (element, name, mapset) open a database file for reading
G_fopen_sites_new (name) open a new site list file
G_fopen_sites_old (name, mapset) open an existing site list file
G_fopen_vector_new (name) opena new vector file
G_fopen_vector_old (name, mapset) open an existing vector file
G_fork () create a protected child process
G_format_easting (east, buf, projection) easting to ASCII
G_format_northing (north, buf, projection) northing to ASCII
G_format_resolution (resolution, buf, projection) resolution to ASCII

G_free_cats (cats) free category structure memory

G_free_cell_stats (s) free cell stats
G_free_colors (colors) free color structure memory
G_fully_qualified_name (name, mapset) fully qualified file name
G_geodesic_distance (lon1, lat1, lon2, lat2) geodesic distance
G_geodesic_distance_lon_to_lon (lon1, lon2) geodesic distance
G_get_ask_return_msg () get Hit RETURN msg
G_get_cat (n,cats) get a category label
G_get_cats_title (cats) get title from category structure
G_get_cellhd (name, mapset, cellhd) read the raster header
G_get_cell_title (name, mapset) get raster map title
G_get_color (cat, red, green, blue, colors) get a category color
G_get_color_range (min, max, colors) get color range
G_get_default_window (region) read the default region
G_get_ellipsoid_by_name (name, a, e2) get ellipsoid by name
G_get_ellipsoid_parameters (a, e2) get ellipsoid parameters
G_ _getenv (name) query GRASS environment variable
G_getenv (name) query GRASS environment variable
G_get_map_row (fd, cell, row) read a raster file
G_get_map_row_nomask (fd, cell, row) read a raster file (without masking)

G_get_range_min_max (range, min, max) get range min and max
G_gets (buf) get a line of input (detect ctrl-z)
G_get_set_window (region) get the active region
G_get_site (fd, east, north, desc) read site list file
G_get_window (region) read the database region
G_gisbase () top level program directory
G_gisdbase () top level database directory
G_gisinit (program_name) initialize gis library
G_home () user’s home directory
G_init_cats (n, title, cats) initialize category structure
G_init_cell_stats (s) initialize cell stats
G_init_colors (colors) initialize color structure
G_init_range (range) initialize range structure
G_intr_char () return interrupt char
G_is_reclass (name, mapset, r_name, r_mapset) reclass file?
G_legal_filename (name) check for legal database file names
G_location () current location name
G_location_path () current location directory
G_lookup_colors (raster, red, green, blue, set, n, colors) lookup an array of colors

G_make_aspect_colors (colors, min, max) make aspect colors

G_make_grey_scale_colors (colors, min, max) make linear grey scale

G_make_gyr_colors (colors, min, max) make green,yellow,red colors

G_make_histogram_eq_colors (colors, s) make histogram-stretched grey colors

G_make_rainbow_colors (colors, min, max) make rainbow colors
G_make_ramp_colors (colors, min, max) make color ramp
G_make_random_colors (colors, min, max) make random colors
G_make_ryg_colors (colors, min, max) make red,yellow,green colors

G_make_wave_colors (colors, min, max) make color wave
G_malloc (size) memory allocation
G_mapset () current mapset name
G_meridional_radius_of_curvature (lon, a, e2) meridional radius of curvature

184

G_myname () location title
G_next_cell_stat (cat, count, s) retrieve sorted cell stats
G_northing_to_row (north, region) northing to row
G_open_cell_new (name) open a new raster file (sequential)
G_open_cell_new_random (name) open a new raster file (random)
G_open_cell_new_uncompressed (name) open a new raster file (uncompressed)

G_open_cell_old (name, mapset) open an existing raster file
G_open_new (element, name) open a new database file
G_open_old (element, name, mapset) open a database file for reading

G_open_update (element, name) open a database file for update
G_parser (argc, argv) parse command line
G_percent (n, total, incr) print percent complete messages
G_planimetric_polygon_area (x, y, n) area in coordinate units
G_plot_fx (f, east1, east2) plot f(east1) to f(east2)
G_plot_line (east1, north1, east2, north2) plot line between latlon coordinates

G_plot_polygon (east, north, n) plot filled polygon with n vertices
G_plot_where_en (x, y, east, north) x,y to east,north
G_plot_where_xy (east, north, x, y) east,north to x,y
G_pole_in_polygon (x, y, n) pole in polygon
G_program_name () return program name
G_projection () query cartographic projection
G_put_cellhd (name, cellhd) write the raster header
G_put_cell_title (name, title) change raster map title
G_put_map_row (fd, buf) write a raster file (sequential)
G_put_map_row_random (fd, buf, row, col, ncells) write a raster file (random)

G_put_site (fd, east, north, desc) write site list file
G_put_window (region) write the database region
G_radius_of_conformal_tangent_sphere (lon, a, e2) radius of conformal tangent sphere

G_read_cats (name, mapset, cats) read raster category file
G_read_colors (name, mapset, colors) read map layer color table
G_read_history (name, mapset, history) read raster history file
G_read_range (name, mapset, range) read raster range
G_read_vector_cats (name, mapset, cats) read vector category file
G_realloc (ptr, size) memory allocation
G_remove (element, name) remove a database file
G_rename (element, old, new) rename a database file
G_rewind_cell_stats (s) reset/rewind cell stats
G_row_to_northing (row, region) row to northing
G_row_update_range (cell, n, range) update range structure
G_scan_easting (buf, easting, projection) ASCII easting to double
G_scan_northing (buf, northing, projection) ASCII northing to double

G_scan_resolution (buf, resolution, projection) ASCII resolution to double

G_set_ask_return_msg (msg) set Hit RETURN msg
G_set_cat (n, label, cats) set a category label
G_set_cats_title (title, cats) set title in category structure
G_set_color (cat, red, green, blue, colors) set a category color
G_ _setenv (name, value) set GRASS environment variable
G_setenv (name, value) set GRASS environment variable
G_set_error_routine (handler) change error handling
G_set_geodesic_distance_lat1 (lat1) set geodesic distance lat1
G_set_geodesic_distance_lat2 (lat2) set geodesic distance lat2
G_setup_plot (t, b, l, r, Move, Cont) initialize plotting routines
G_set_window (region) set the active region
G_shortest_way (east1,east2) shortest way between eastings
G_short_history (name, type, history) initialize history structure
G_sleep_on_error (flag) sleep on error?
G_squeeze (s) remove unnecessary white space
G_store (s) copy string to allocated memory
G_strcat (dst,src) concatenate strings
G_strcpy (dst, src) copy strings
G_strip (s) remove leading/training white space
G_strncpy (dst, src, n) copy strings
G_suppress_warnings (flag) suppress warnings?
G_system (command) run a shell level command

185

G_tempfile () returns a temporary file name
G_tolcase (s) convert string to lower case
G_toucase (s) convert string to upper case
G_transverse_radius_of_curvature (lon, a, e2) transverse radius of curvature

G_unctrl (c) printable version of control character
G_unopen_cell (fd) unopen a raster file
G_unset_error_routine () reset normal error handling
G_update_cell_stats (data, n, s) add data to cell stats
G_update_range (cat, range) update range structure
G_usage () command line help/usage message
G_warning (message) print warning message and continue
G_whoami () user’s name
G_window_cols () number of columns in active region
G_window_rows () number of rows in active region
G_write_cats (name, cats) write raster category file
G_write_colors (name, mapset, colors) write map layer color table
G_write_history (name, history) write raster history file
G_write_range (name, range) write raster range file
G_write_vector_cats (name, cats) write vector category file
G_yes (question,default) ask a yes/no question
G_zero_cell_buf (buf) zero a raster buffer
G_zone () query cartographic zone

186

Appendix D
Index to Vector Library

Here is an index of vector Library routines, with calling sequences and short function descriptions.

vector Library

routine parameters description
dig_check_dist (Map, n, x, y, d) find distance of point to line
dig_point_in_area (Map, x, y, pa) is point in area?
dig_point_to_area (Map, x, y) find which area point is in
dig_point_to_line (Map, x, y, type) find which arc point is closest to

V1_read_line (Map, Points, offset) read vector arc by specifying offset

V2_area_att (Map, area) get attribute number of area
V2_get_area_bbox (Map, area, n, s, e, w) get bounding box of area
V2_get_area (Map, n, pa) get area info from id
V2_get_line_bbox (Map, line, n, s, e, w) get bounding box of arc
V2_line_att (Map, line) get attribute number of arc
V2_num_areas (Map) get number of areas in vector map
V2_num_lines (Map) get number of arcs in vector map
V2_read_line (Map, Points, line) read vector arc by specifying line id

Vect_close (Map) close a vector map
Vect_copy_head_data (from, to) copy vector header struct data
Vect_copy_pnts_to_xy (Points, x, y, n) convert line_pnts structure to xy arrays

Vect_copy_xy_to_pnts (Points, x, y, n) convert xy arrays to line_pnts structure

Vect_destroy_line_struct (Points) deallocate line points structure space

Vect_get_area_points (Map, area, Points) get defining points for area polygon

Vect_level (Map) get open level of vector map
Vect_new_line_struct () create new initialized line points structure
Vect_open_new (Map, name) open new vector map
Vect_open_old (Map, name, mapset) open existing vector map
Vect_print_header (Map) print header info to stdout
Vect_read_next_line (Map, Points) read next vector line
Vect_remove_constraints (Map) unset any vector read constraints
Vect_rewind (Map) rewind vector map for re-reading
Vect_set_constraint_region (Map, n, s, e, w) set restricted region to read vector arcs from

Vect_set_constraint_type (Map, type) specify types of arcs to read
Vect_set_open_level (level) specify level for opening map
Vect_write_line (Map, type, Points) write out arc to vector map

187

Appendix E
Index to Imagery Library

Here is an index of Imagery Library routines, with calling sequences and short function descriptions.

Imagery Library

routine parameters description
I_add_file_to_group_ref (name, mapset, ref) add file name to Ref structure

I_ask_group_any (prompt, group) prompt for any valid group name

I_ask_group_new (prompt, group) prompt for new group
I_ask_group_old (prompt, group) prompt for an existing group
I_find_group (group) does group exist?
I_free_group_ref (ref) free Ref structure
I_get_control_points (group, cp) read group control points
I_get_group_ref (group, ref) read group REF file
I_get_subgroup_ref (group, subgroup, ref) read subgroup REF file
I_get_target (group, location, mapset) read target information
I_init_group_ref (ref) initialize Ref structure
I_new_control_point (cp, e1, n1, e2, n2, status) add new control point

I_put_control_points (group, cp) write group control points
I_put_group_ref (group, ref) write group REF file
I_put_subgroup_ref (group, subgroup, ref) write subgroup REF file

I_put_target (group, location, mapset) write target information
I_transfer_group_ref_file (src, n, dst) copy Ref lists

188

Appendix F
Index to Display Graphics Library

Here is an index of Display Graphics Library routines, with calling sequences and short function descriptions.

Display Graphics Library

routine parameters description
D_add_to_list (string) add command to frame display list
D_a_to_d_col (column) array to screen (column)
D_a_to_d_row (row) array to screen (row)
D_cell_draw_setup (top, bottom, left, right) prepare for raster graphics

D_check_colormap_size (min,max,ncolors) verify a range of colors

D_check_map_window (region) assign/retrieve current map region
D_clear_window () clear frame display lists
D_clear_window () clears information about current frame
D_clip (s, n, w, e, x, y, c_x, c_y) clip coordinates to window
D_color (cat, colors) select raster color for line
D_cont_abs (x,y) line to x,y
D_cont_rel (x,y) line to x,y
D_do_conversions (region, top, bottom, left, right) initialize conversions

D_draw_cell (row, raster, colors) render a raster row
D_d_to_a_col (x) screen to array (x)
D_d_to_a_row (y) screen to array (y)
D_d_to_u_col (x) screen to earth (x)
D_d_to_u_row (y) screen to earth (y)
D_erase_window () erase current frame
D_get_cell_name (name) retrieve raster map name
D_get_cur_wind (name) identify current graphics frame
D_get_screen_window (top, bottom, left, right) retrieve current frame coordinates

D_lookup_colors (data, n, colors) change to hardware color
D_move_abs (x,y) move to pixel
D_move_rel (x,y) move to pixel
D_new_window (name, top, bottom, left, right) create new graphics frame

D_popup (bcolor, tcolor, dcolor, top, left, size, options) pop-up menu

D_raster (raster, n, repeat, colors) low lev el raster plotting
D_remove_window () remove a frame
D_reset_color (data, r, g, b) reset raster color value
D_reset_colors (colors) set colors in driver
D_reset_screen_window (top, bottom, left, right) resets current frame position

D_set_cell_name (name) add raster map name to display list

D_set_clip_window_to_map_window () set clipping window to map window

D_set_clip_window (top, bottom, left, right) set clipping window
D_set_colors (colors) establish raster colors for graphics
D_set_cur_wind (name) set current graphics frame
D_set_overlay_mode (flag) configure raster overlay mode
D_setup (clear) graphics frame setup
D_setup (clear) initialize/create a frame
D_show_window (color) outlinescurrent frame
D_timestamp () give current time to frame
D_translate_color (name) color name to number
D_u_to_a_col (east) earth to array (east)
D_u_to_a_row (north) earth to array (north)
D_u_to_d_col (east) earth to screen (east)
D_u_to_d_row (north) earth to screen (north)

189

Appendix G
Index to Raster Graphics Library

Here is an index of Raster Graphics Library routines, with calling sequences and short function descriptions.

Raster Graphics Library

routine parameters description
R_box_abs (x1,y1,x2,y2) fill a box
R_box_rel (dx,dy) fill a box
R_close_driver () terminate graphics
R_color (color) select color
R_color_table_fixed () select fixed color table
R_color_table_float () select floating color table
R_cont_abs (x,y) draw line
R_cont_rel (dx,dy) draw line
R_erase () erase screen
R_flush () flush graphics
R_font (font) choose font
R_get_location_with_box (x,y,nx,ny,button) get mouse location using a box

R_get_location_with_line (x,y,nx,ny,button) get mouse location using a line

R_get_location_with_pointer (nx,ny,button) get mouse location using pointer

R_get_text_box (text, top, bottom, left, right) get text extents
R_move_abs (x,y) move current location
R_move_rel (dx,dy) move current location
R_open_driver () initialize graphics
R_polydots_abs (x,y,num) draw a series of dots
R_polydots_rel (x,y,num) draw a series of dots
R_polygon_abs (x,y,num) draw a closed polygon
R_polygon_rel (x,y,num) draw a closed polygon
R_polyline_abs (x,y,num) draw an open polygon
R_polyline_rel (x,y,num) draw an open polygon
R_raster (num,nrows,withzero,raster) draw a raster
R_reset_color (red, green, blu, num) define single color
R_reset_colors (min,max,red,green,blue) define multiple colors
R_RGB_color (red,green,blue) select color
R_RGB_raster (num,nrows,red,green,blue,withzero) draw a raster
R_screen_bot () bottom of screen
R_screen_left () screen left edge
R_screen_rite () screen right edge
R_screen_top () top of screen
R_set_RGB_color (red,green,blue) initialize graphics
R_set_window (top,bottom,left,right) set text clipping frame
R_stabilize () synchronize graphics
R_standard_color (color) select standard color
R_text_size (width, height) set text size
R_text (text) write text

190

Appendix H
Index to Rowio Library

Here is an index of Rowio Library routines, with calling sequences and short function descriptions.

Rowio Library

routine parameters description
rowio_fileno (r) get file descriptor
rowio_flush (r) force pending updates to disk
rowio_forget (r, n) forget a row
rowio_get (r, n) read a row
rowio_put (r, buf, n) write a row
rowio_release (r) free allocated memory
rowio_setup (r, fd, nrows, len, getrow, putrow) configure rowio structure

191

Appendix I
Index to Segment Library

Here is an index of Segment Library routines, with calling sequences and short function descriptions.

Segment Library

routine parameters description
segment_flush (seg) flush pending updates to disk
segment_format (fd, nrows, ncols, srows, scols, len) format a segment file

segment_get_row (seg, buf, row) read row from segment file
segment_get (seg, value, row, col) get value from segment file
segment_init (seg, fd, nsegs) initialize segment structure
segment_put_row (seg, buf, row) write row to segment file
segment_put (seg, value, row, col) put value to segment file
segment_release (seg) free allocated memory

192

Appendix J
Index to Vask Library

Here is an index of Vask Library routines, with calling sequences and short function descriptions.

Vask Library

routine parameters description
V_call () interact with the user
V_clear () initialize screen description
V_const (value, type, row, col, len) define screen constant
V_float_accuracy (num) set number of decimal places
V_intrpt_msg (text) change ctrl-c message
V_intrpt_ok () allow ctrl-c
V_line (num, text) add line of text to screen
V_ques (value, type, row, col, len) define screen question

	Table of Contents
	Chapter 1 Introduction
	1.1. Background
	Chapter 2 Development Guidelines
	2.1. Intended GRASS Audience 11
	2.2. Programming Standards
	2.3. Documentation Standards
	Chapter 3 Multilevel 13
	3.1. General User
	3.2. GRASS Programmer
	3.3. Driver Programmer
	3.4. GRASS System Designer
	Chapter 4 Database Structure 16
	4.1. Programming Interface 16
	4.2. GISDBASE 16
	4.3. Locations 16
	4.4. Mapsets 16
	4.5. Mapset Structure 17
	4.6. Permanent Mapset 18
	4.7. Database Access Rules 18
	Chapter 5 Raster Maps 20
	5.1. What is a Raster Map Layer?
	5.2. Raster File Format 20
	5.3. Raster Header Format 21
	5.4. Raster Category File Format
	5.5. Raster Color Table Format 23
	5.6. Raster History File 24
	5.7. Raster Range File 25
	Chapter 6 Vector Maps 26
	6.1. What is a Vector Map Layer? 26
	6.2. Ascii Arc File Format
	6.3. Vector Category Attribute File 28
	6.4. Vector Category Label File
	6.5. Vector Index and Pointer File 29
	6.6. Digitizer Registration Points File 29
	6.7. Vector Topology Rules 29
	6.8. Importing Vector Files Into GRASS 30
	Chapter 7 Point Data: Site List Files 31
	7.1. What is a Site List? 31
	7.2. Site File Format 31
	7.3. Programming Interface to Site Files 31
	Chapter 8 Image Data: Groups 32
	8.1. Introduction 32
	8.2. What is a Group? 32
	8.3. The Group Structure 33
	8.4. Imagery Programs 34
	8.5. Programming Interface for Groups 35
	
	9.1. Region 36
	9.2. Mask 37
	9.3. Variations 37
	
	10.1. UNIX Environment 38
	10.2. GRASS Environment 38
	10.3. Difference Between GRASS and UNIX Environments 39
	
	11.1. gmake4.2 40
	11.2. Gmakefile Variables 40
	11.3. Constructing a Gmakefile 41
	
	
	11.4. Compilation Results 43
	
	11.5. Notes 45
	12.1. Introduction 46
	12.2. Library Initialization 46
	12.3. Diagnostic Messages 46
	
	12.4. Environment and Database Information 47
	12.5. Fundamental Database Access Routines 49
	12.6. Memory Allocation 55
	12.7. The Region 55
	12.8. Latitude-Longitude Databases 59
	12.9. Raster File Processing 65
	12.10. Raster Map Layer Support Routines 70
	12.11. Vector File Processing 80
	12.12. Site List Processing 83
	12.13. General Plotting Routines 85
	12.14. Temporary Files 86
	12.15. Command Line Parsing
	12.16. String Manipulation Functions 96
	12.17. Enhanced UNIX Routines 98
	12.18. Miscellaneous 99
	12.19. Deleted Routines 101
	12.20. GIS Library Data Structures 101
	12.21. Loading the GIS Library 103
	Chapter 13 Vector Library 104
	13.1. Introduction
	13.2. Changes in 4.0 from 3.0 104
	13.3. Opening and closing vector maps 106
	13.4. Leading and writing vector maps 107
	13.5. Data Structures 108
	13.6. Data Conversion 109
	13.7. Miscellaneous 109
	13.8. Routines that remain from GRASS 3.1 111
	13.9. Loading the Vector Library 111
	
	14.1. Introduction 112
	14.2. Group Processing 112
	14.3. Loading the Imagery Library 116
	14.4. Imagery Library Data Structures 116
	Chapter 15 Raster Graphics Library 118
	15.1. Introduction 118
	15.2. Connecting to the Driver 118
	15.3. Colors 118
	15.4. Basic Graphics 119
	15.5. Poly Calls 121
	15.6. Raster Calls 122
	15.7. Text 123
	15.8. User Input 124
	15.9. Loading the Raster Graphics Library 124
	Chapter 16 Display Graphics Library 125
	16.1. Introduction 125
	16.2. Library Initialization 125
	16.3. Frame Management 126
	16.4. Frame Contents Management 127
	16.5. Coordinate Transformation Routines 128
	16.6. Raster Graphics 130
	16.7. Window Clipping 132
	16.8. Pop-up Menus 132
	16.9. Colors 133
	16.10. Deleted Routines 133
	16.11. Loading the Display Graphics Library 133
	16.12. Vector Graphics / Plotting Routines 134
	Chapter 17 Lock Library 135
	17.1. Introduction 135
	17.2. Lock Routine Synopses 135
	17.3. Use and Limitations 135
	17.4. Loading the Lock Library 136
	Chapter 18 Rowio Library 137
	18.1. Introduction 137
	18.2. Rowio Routine Synopses 137
	18.3. Rowio Programming Considerations 139
	18.4. Loading the Rowio Library 139
	Chapter 19 Segment Library 140
	19.1. Introduction 140
	19.2. Segment Routines 140
	19.3. How to Use the Library Routines 142
	19.4. Loading the Segment Library 143
	Chapter 20 Vask Library 144
	20.1. Introduction 144
	20.2. Vask Routine Synopses 144
	20.3. An Example Program 145
	20.4. Loading the Vask Library 146
	20.5. Programming Considerations 147
	Chapter 21 Digitizer/Mouse/Trackball Files 148
	21.1. Rules for Digitizer Configuration Files 148
	21.2. Digitizer Configuration File Commands 148
	21.3. Examples of Complete Files 153
	21.4. Digitizer File Naming Conventions 155
	
	22.1. Introduction 156
	22.2. Writing the Digitizer Device Driver 156
	22.3. Discussion of the Finer Points (Hints) 160
	
	23.1. Introduction 164
	23.2. Basics 164
	23.3. Basic Routines 164
	23.4. Optional Routines 167
	
	24.1. Introduction 168
	24.2. Creating a Source Directory for the Driver Code 168
	24.3. The Paint Driver Executable Program 168
	24.4. The Device Driver Shell Script
	24.5. Programming Considerations 173
	24.6. Paint Driver Library 173
	24.7. Compiling the Driver 174
	24.8. Creating 125 Colors From 3 Colors 175
	Chapter 25 Writing GRASS Shell Scripts 176
	25.1. Use the Bourne Shell 176
	25.2. How a Script Should Start 176
	25.3. g.ask 176
	25.4. g.findfile 177
	Appendix C. Index to GIS Library 182
	Appendix D. Index to Vector Library 186
	Appendix E. Index to Imagery Library 187
	Appendix F. Index to Display Graphics Library 188
	Appendix G. Index to Raster Graphics Library 189
	Appendix H. Index to Rowio Library 190
	Appendix I. Index to Segment Library 191
	Appendix J. Index toVask Library 192

